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ABSTRACT: 

To monitor and manage the changes in the land use and land cover, is vital the process of classification; machine learning offers the 

potential for effective and efficient classification of remotely sensed imagery. However, not many articles have explicitly dealt with 

the effects of image fusion on land-cover classification accuracy. Although some studies have compared thematic mapping accuracy 

produced using different classification algorithms, there are no currently many studies that utilize image fusion for assessing 

different machine learning algorithms for classification purposes. The main aim of this study is to compare different 

machine learning algorithm for pixel classification of imagery fused with sensors Sentinel-2A and PlanetScope. The method 

used for image fusion is a variational model, the high spectral resolution of Sentinel-2A imagery and the high spatial 

resolution of PlanetScope imagery was fused; the machine learning algorithms evaluated are six that have been widely used in the 

remote sensing community: DT (Decision Tree), Boosted DT, RF (Random Forest), SVM radial base (Support Vector Machine), 

ANN (Artificial Neural Networks), KNN (k-Nearest Neighbors), for the classification four spectral indices (NDVI, NDMI, 

NDBI, MSAVI) were included, derived of the image fusion. The results show that the highest accuracy was produced by 

SVM radial base (OA: 87.8%, Kappa: 87%) respect to the other methods, nevertheless the methods RF, Boosted DT 

and KNN shown to be very powerful methods for classification of the study area. 

1. INTRODUCTION

The classification for land use and land cover (LULC) 

constitutes a key variable for the monitoring earth that in 

general have shown a close correlation with human activities 

and the physical environment, the fast development of human 

societies has intensified different types of activities that have 

resulted in a continuous and noticeable influence on LULC, 

(Petropoulos, Partsinevelos, & Mitraka, 2013). 

In the last years remote sensing scientists are increasingly 

adopting machine learning classification algorithms for LCLU 

mapping, (Shih, Stow, & Tsai, 2018). Compared with products 

derived by traditional statistical classifiers (e.g. minimum 

distance, maximum likelihood, and parallelepiped classifiers), 

previous research results generally show that machine learning 

classifiers yield more accurate and reliable products, 

particularly if abundant training data are available, (Schneider, 

2012). While unsupervised classifiers is based on similarity 

measures like color information, distance between neighboring 

pixels, etc., this may not be accurate with the reality, (Sivagami, 

Krishankumar, & Ravichandran, 2018). 

Machine learning offers the potential for effective and efficient 

classification of remotely sensed imagery. The strengths of 

machine learning include the capacity to handle data of high 

dimensionality and to map classes with very complex 

characteristics, it can accept a variety of input predictor data, 

and do not make assumptions about the data distribution (i.e. 

are nonparametric), (Maxwell, Warner, & Fang, 2018). 

A wide range of studies have generally found that these 

methods tend to produce highs accuracy, authors like (Keshtkar, 

Voigt, & Alizadeh, 2017) compared pixel-based random forest 

(RF) and decision tree (DT) classifier methods and a support 

vector machine (SVM) algorithms both in pixel-based and 

object-based approaches for classification of land-cover in a 

heterogeneous landscape with Landsat imagery, they found that 

the object-based SVM classifier is the most accurate with a 

kappa value of 0.88.  

(Maxwell et al., 2018) reviewed and applied six types of 

machine learning classifiers (i.e. support vector machine, 

decision tree, random forest, artificial neural network, boosted 

decision tree, and k-nearest neighbors) for two datasets of 

AVIRIS imagery. The map derived from SVM (94.4%), 

boosted DT (87.6%) and RF (87.8%) classifiers were found to 

have the highest overall accuracy for each dataset. 

(Shih et al., 2018) established a comparison of machine learning 

classifiers for Landsat-based land cover and land use mapping, 

they employed ANN, DT, SVM, and RF classifiers to identify 

optimal polynomial degree of input features and 

hyperparameters with Landsat imagery of a region in China and 

Ghana and obtained that SVM has the highest overall accuracy 

(72.6%). (Abdi, 2019) compared the classification performance 

of four non-parametric algorithms: support vector machines 

(SVM), random forests (RF), extreme gradient boosting 

(Xgboost), and deep learning (DL) in a boreal landscape using 

Sentinel-2 data, where the four tested algorithms produced 

similar overall accuracies ranging between 0.733 to 0.758. 

While (Sivagami et al., 2018) analyzed the performance of 

different algorithms (Gaussian SVM, KNN, Decision Tree and 

Ensemble) for labelling each pixel of a orthophoto image, 

concluded that the fine Gaussian support vector machine 

outperforms the other techniques with an overall accuracy of 

75.15%;  and (Petropoulos et al., 2013) proposed a 
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methodology for quantifying the impact of surface mining 

activity and reclamation from a watershed to local scale. The 

method is based on a Support Vector Machines (SVMs) 

classifier combined with multi-temporal change detection of 

Landsat TM imagery, the overall classification accuracy of the 

thematic land cover maps produced was reported over 90%. 

 

On the other hand recent improvements in satellite imaging 

technology have given rise to new opportunities for more 

accurate land use and land cover mapping; different Earth-

observing satellites, such as Sentinel-2A and PlanetScope with 

different spatial resolutions and with global almost daily revisit 

time provide valuable information about the earth surface in a 

short time, (M. Gašparović, Medak, Pilaš, Jurjević, & 

Balenović, 2018).  

 

Image fusion is a process of combining images obtained by 

sensors of different wavelengths viewing the same scene, to 

form a composite image with improved image content that 

makes it easier for the user to detect, recognize and identify 

targets, (Wald, 1999). Specifically, as far as spatial and spectral 

resolution are concerned, high spectral resolution can generally 

be helpful in discriminating LULC types, while high spatial 

resolution may hold advantages in identifying terrain features 

and structures, (Tso & Mather, 2016). In this research the high 

spectral resolution of Sentinel-2A imagery and the high spatial 

resolution of PlanetScope imagery was fused. 

 

(Ballester, Caselles, Igual, Verdera, & Rougé, 2006) has 

proposed an algorithm based on the assumption that, to a large 

extent, the geometry of the spectral channels is contained in the 

topographic map of its panchromatic image, called a variational 

model for P+XS image fusion. This have been evaluated in 

some researches like (He, Condat, Chanussot, & Xia, 2012) 

where experimental results on IKONOS satellite images 

demonstrated the effectiveness of the variational model, also 

(Mateo Gašparović & Jogun, 2017) evaluated this model for 

Sentinel-2A imagery, the results showed that the fusion method, 

P+XS, improved the overall land cover classification accuracy.  

 

While (M. Gašparović et al., 2018) evaluated a fusion of 

Sentinel-2 imagery with PlanetScope because of its higher 

spatial resolution, the fusion method validation was provided 

based on the land-cover classification accuracy, the 

classification was made with random forest (RF) classifier, 

results show better accuracy for fused imagery than the 

Sentinel-2 imagery. 

 

Actually, it is vital to map the LCLU at the landscape scale in 

order to monitor and manage the changes in the earth, 

classification using satellite data provides a crucial starting 

point for this endeavor, (Abdi, 2019). Therefore, more research 

is required in this area (especially for preparation of land-cover 

maps) to ascertain the superiority of one method or group of 

methods over others. However, not many articles have explicitly 

dealt with the effects of image fusion on land-cover 

classification accuracy, although some studies have compared 

thematic mapping accuracy produced using different 

classification algorithms, there are no currently many studies 

that utilize image fusion for assessing different machine 

learning algorithms for classification purposes. 

 

The main aim of this paper is to compare different machine 

learning algorithm for pixel classification of imagery fused from 

sensors Sentinel-2A and PlanetScope. The method used for 

image fusion is a variational model for P+XS; the machine 

learning algorithms evaluated are six that have been widely 

used in the remote sensing community: DT (Decision Tree), 

Boosted DT, RF (Random Forest), SVM radial base (Support 

Vector Machine), ANN (Artificial Neural Networks), KNN (k-

Nearest Neighbors). 

 

2. STUDY AREA AND DATASET 

2.1 Study area 

The study area of this research is a part of the region of the mine 

Cerrejon, this is ubicated in middle of five municipalities 

(Riohacha, Hato Nuevo, Albana, Maicao and Barrancas), 

(Figure 1) all belonging to the department of Guajira in 

Colombia, this mine have an open-pit exploitation, there 

extracts coal. The study zone has an area of 207.75 square km 

or 20775.49 Ha, and there are land covers like forest, grass, 

bushes, urban area, water, bare soil and mining. The six 

machine learning algorithms were evaluated in this area. 

 

 
Figure 1: Study Area located in Guajira, Colombia 

 

2.2 Dataset 

In this research, satellite image Sentinel-2A of 10-m and 20-m 

spatial resolution and 3-m satellite image PlanetScope were 

used (Fig. 2). Sentinel-2A (S-2A) is developed by the European 

Space Agency specifically for the Copernicus program covering 

all of Earth's landmass every 5 days. It has an optical 

multispectral instrument with 13 spectral bands: four bands at 

10 m spatial resolution, six bands at 20 m spatial resolution, and 

three bands at 60 m spatial resolution, (Copernicus, 2017). The 

product used was Level-2A that provide Bottom of Atmosphere 

(BOA) reflectance, images are ortho-images in UTM/WGS84 

projection.  

 

Planet operates with more than 175 PS satellites that collect 

multispectral imagery in 4 bands with a collection capacity of 

300 million square km per day, ability to image all of Earth's 

landmass every day (PlanetLabs, 2019). The product used was 

4-band SR (Surface Reflectance) analytic data with a spatial 

resolution resampled at 3 meters and projected in the UTM 

projection using the WGS84 datum, this product is 

orthorectified, the image of 31th July 2019 was used. For this 

research, for S-2A four bands 10-m (2, 3, 4, 8) and six bands 
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20-m Red Edge (RE; 5, 6, 7, 8a) and SWIR (Bands 11,12) for 

the date 2th August 2019 was used. 

 

 
Figure 2: Overview of the Sentinel-2A and PlanetScope spectral 

bands employed. Adapted of (M. Gašparović et al., 2018). 

 

3. METHODOLOGY 

The methodology was divided in three phases, the first phase 

was download and clipping of the Sentinel-2A (S-2A) and 

PlanetScope (PS) imagery, this was followed by the phase of 

Image Fusion between the two images and the assessment 

process, the third phase correspond to classification land-cover 

of the study area through machine learning algorithms including 

spectral indices and image fused. The Figure 3 present the 

workflow employed in this research. 

 

 
Figure 3: Workflow followed in the present research 

 

3.1 Preparation 

The Sentinel-2A and PlanetScope imagery were download and 

clipped to the study area, both images were georeferenced in the 

WGS84-UTM18N coordinate system. 

 

3.2 Image Fusion 

The method used for the image fusion between Sentinel-2A and 

Planetscope imagery is based in (Mateo Gašparović & Jogun, 

2017), they used variational (P + XS) fusion method. The P + 

XS method introduces the geometry information of the higher 

resolution image by aligning all edges of the higher resolution 

image with each lower resolution multispectral band. To obtain 

the spectral information for the fused image, the method 

assumes that images taken in different spectral bands share 

common geometric information and that the higher resolution 

image can be approximated as a linear combination of the high-

resolution multispectral bands (Ballester et al., 2006; Mateo 

Gašparović & Jogun, 2017; He et al., 2012).  

Based on the research of (M. Gašparović et al., 2018), each 

band S-2A, was fused with a band PS with similar spectral 

characteristics; therefore, 10-m S-2 bands (2,3,4,8) are fused 

based on the PS bands 1,2,3,4 respectively. The band 8A, S-2A 

20m was fused with the PS band 4. For the bands 5,6,7,11,12 

and based in (M. Gašparović et al., 2018) this were fused with 

the synthetized band (S) given by the equation 1. 

                                         (1) 

 

where  and  represent PS band 3 and 4, respectively. Image 

fusion process was made with the use of open-source software 

Orfeo Toolbox (OTB) version 6.6.1. OTB algorithm for image 

fusion was accessed from Monteverdi. 

 

For the spectral and spatial evaluation of the image fusion we 

used the traditional quality metrics like ERGAS (Alparone 

et al., 2007), RMSE (Root-Mean-Square Error) (Otazu, 

Gonzalez-Audicana, Fors, & Nunez, 2005), CC (Correlation 

Coeficient) (Nunez et al., 1999), and Index of Quality Universal 

(Q) (Wang & Bovik, 2002). The evaluation of results in image 

fusion traditionally consist in to calculate the similarity between 

the merged image and a reference image, however, still there is 

not universally accepted standard index to evaluate image 

fusion processes (Renza Torres, 2010). 

 

3.3 Classification Land-Cover (CLC) 

Obtained the image through the image fusion, a process of 

classification land-cover was developed using machine learning 

algorithms, the first step is the elaboration and generation of 

four spectral indices derived from the resultant bands of image 

fusion, the indices chosen let to provide useful information for 

distinguish between different level of vegetation and soil. These 

indices help to improve classification models; they are 

combined with spectral variables derived from the image fusion 

which allow better spectral differentiation of interest classes. 

 

The spectral indices employed (Table 1) are: Normalized 

Difference Vegetation Index (NDVI) since vegetation cover is 

generally regarded as a key indicator of restoration success 

reflecting the critical stages of ecosystem development and 

functionality, (Vallauri, Aronson, Dudley, & Vallejo, 2005); 

Normalized Difference Built-up Index (NDBI) uses the SWIR 

band to identify artificial surfaces because of their strong 

reflectivity in that portion while using the NIR to suppress the 

influence of vegetated surfaces (Zha, Gao, & Ni, 2003). 

 

Normalized Difference Moisture Index (NDMI), the difference 

between the NIR and the MIR appears to be the ability of the 

MIR wavelengths to absorb water, in a green leaf, the NIR band 

has the maximum reflectance and the reduction of reflectance of 

the MIR as compared to the NIR is due to the absorption of 

water (Wilson & Sader, 2002) and MSAVI (Modified Soil-

Adjusted Vegetation Index) it show to increase the dynamic 

range of the vegetation signal while further minimizing the soil 

background influences, resulting in greater vegetation 

sensitivity as defined by a “vegetation signal” to “soil noise” 

ratio, it is more applicable than SAVI in practice because soil 

effects are implicitly adjusted according to different vegetation 

densities (Qi, Chehbouni, Huete, Kerr, & Sorooshian, 1994; 

Wu, Wang, & Bauer, 2007). 

 
INDEX 

NDVI = (NIR – RED) / (NIR + RED) 

NDMI = (NIR – SWIR1) / (NIR + SWIR1) 

NDBI = (SWIR1 – NIR) / (SWIR1 + NIR) 

MSAVI =  

Table 1: Spectral indices used 
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Training data is a crucial component in supervised learning and 

most machine learning algorithms require a large number of 

training data samples, (Abdi, 2019). Sample size and quality of 

training data have generally showed to have a great impact on 

the accuracy of the classification, training data may even have a 

greater impact than the algorithm used, (Maxwell et al., 2018). 

A total of 200 training points was collected for all the ten 

classes (Forest, Grasses, Water, Bushes, Bare soil, Mining, 

Urban area o Built-up, Secondary Forest, Clouds, Shadows) in 

the study area, using random sampling from the image fusion 

and spectral indices. Around for each point a kernel of 10 by 10 

pixels was created for increase the sample size and to obtain 

20.000 pixels or samples, the training set was divided in 30% 

for validation and 70% for training.  

 

The statistical variations of each class are analyzed and it is 

determined whether the class should be separated into different 

subclasses (cluster), seeking to improve the identification of 

spectral variations within it. 

 

According to (Bradski & Kaehler, 2013; Tso & Mather, 2016) 

the most used Machine Learning algorithms are: Vector support 

machines (SVM), Decision trees (DT) and Random Forests 

(RF). Each of these non-parametric learning classifiers have 

different sets of features or parameters, such as the ability to 

manage missing measurements or categorical input variables. 

However, there is not "best" classifier, averaging over all 

possible types of data distributions, all classifiers would 

generate the same result, (Bradski & Kaehler, 2013). 

 

Based on the above, we employed six different machine 

learning algorithms for the process of classification: Support 

Vector Machine (SVM), Decision Trees (DT), Random Forest 

(RF), Boosted DT, artificial neural networks (ANN) and k-

nearest neighbors (k-NN), which in the different 

methodological reviews showed good thematic accuracy, (Abdi, 

2019; Keshtkar et al., 2017; Maxwell et al., 2018). The 

classifications were carried out using the free statistical software 

tool R, within R, we used the caret package, (Kuhn et al., 2019), 

which provides a standard syntax to execute a variety of 

machine-learning methods, thus simplifying the process of 

comparing different algorithms and approaches. Other software 

tools, such as scikit-learn for Python and Weka, could also 

potentially be used. 

 

This part provides a brief description and introduction of the 

algorithms used in the classification. 

 

Support Vector Machines (SVM): It is an image classification 

alternative, which allows to obtain exact classifications from a 

set of reduced training samples (Addesso, Conte, Longo, 

Restaino, & Vivone, 2012; I. Lizarazo, 2008). The main 

attraction of SVM is its ability to minimize classification errors, 

creating a hyperplane between each pair of classes, that 

maximizes the distance between the support vectors of each 

class (Buddhiraju & Rizvi, 2010; Tso & Mather, 2016). If it is 

not possible to construct that hyperplane in the original spectral 

space, the separation is carried out in a spectral space of higher 

dimension, (Addesso et al., 2012). 

 

The projection to a higher dimensionality is known as the kernel 

trick. There are many possible kernels (Kavzoglu & Colkesen, 

2009), and each kernel may have a different set of required 

user-specified parameters. Common kernels used in remote 

sensing are polynomial kernels and the radial basis function 

(RBF) kernel. In this research we used (RBF) kernel. 

Decision Trees (DT): The DT algorithm is a technique that 

constructs a series of rules based on the values of the attributes 

of a training sample, to assign a class to each of the objects of 

interest through an objective function, the quality is informally 

informed as a model of classification, (Tan, Steinbach, 

Karpatne, & Kumar, 2018). The design of a DT is based on 

knowledge of the spectral properties of each class and of 

relationships among the classes, (Tso & Mather, 2016). 

 

Random Forest (RF): RF is an ensemble classifier, as it uses a 

large number of DTs in order to overcome the weaknesses of a 

single DT, (Maxwell et al., 2018). It is a classification technique 

that is based on the aggregation of a large number of decision 

trees (Boulesteix, Janitza, Kruppa, & König, 2012), the 

combination of many trees is often more accurate that depend 

on just one tree, (Ivan Lizarazo, 2010). 

  

Boosted DT: Boosted DTs are also an ensemble method using 

DTs. The basis of the boosting techniques is to assign weights 

to the individual elements of the training data set, (Tso & 

Mather, 2016). Boosting enables multiple iterations of DT 

classifiers using a base algorithm, while modifying the training 

sample at each iteration to concentrate on those samples that 

were difficult to classify correctly in the previous iterations, 

each iteration generates a DT, with the final classifier being 

produced by a weighted vote, (Evrendilek & Gulbeyaz, 2011). 

 

Artificial Neural Networks (ANN): ANNs are algorithmic 

classifiers which simulate human neural synapses that conduct 

signals and transforms them into information, ANNs contain 

three types of layers, an input layer, an output layer, and hidden 

layer; each node in the output layer is a class, for example, 

different types of land cover in a study area, from each iteration 

of a training, each layer is slightly adjusted to generate a model 

that can separate most of the training samples into the 

correspondent classes, (Shih et al., 2018). The challenge with 

ANNs is that they can be slow to train, can produce non-optimal 

classifications, and are very easy to over-train, (Maxwell et al., 

2018). 

 

K-Nearest Neighbors (KNN): the classifier allocates unknown 

sample to the neighbors to which it is closest in feature space. 

An inverse distance weighting (IDW) function can be 

incorporated into the k-NN classifier to give more weight to 

information from a neighbor close to an unclassified 

observation than from a more distant neighbor, (Tang, Jing, 

Atkinson, & Li, 2016). 

 

Finally, through a parallelization and optimization process, 

machine learning algorithms are applied, the parallelization 

optimizes processing times and the optimization seeks the use 

of the best configuration parameters of the applied algorithms 

and the best classification performance, avoids that classifier 

underfitting or overfitting, (Shih et al., 2018). 

 

The 30 percent of the training set was used for the validation 

process, the accuracy of each algorithm was assessed using a 

number of metrics derived from an error matrix, these include 

Overall Accuracy (OA), Producer’s Accuracy (PA), and User’s 

Accuracy (UA), (Olofsson et al., 2014), also the accuracy was 

assessed using the kappa coefficient, it is a measure of overall 

statistical agreement of an error matrix, which takes non-

diagonal elements into account, (Jensen, 2005). The algorithms 

with a Kappa greater than 80% are selected as the best, while 

their correlation is less than 75%. If there is no more than one 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W12-2020, 2020 
2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS 2020), 22–26 March 2020, Santiago, Chile

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-361-2020 | © Authors 2020. CC BY 4.0 License. 

Primary publication at IEEE Xplore: https://doi.org/10.1109/LAGIRS48042.2020.9165632

 
 

364



 

method with Kappa greater than 80%, those with a Kappa 

greater than 75% are chosen, while their correlation is less than 

75%. If there are no suitable methods, the algorithm with the 

highest Kappa index obtained is selected. 

 

All maps are generated with a filtering by area, eliminating units 

smaller than 900 square meters and adding them to the 

predominant class around them. 

 

4. RESULTS AND DISCUSSION 

4.1 Image Fusion 

The obtained results give evidence the good visual appearance 

and the spectral content preservation of fused image, through of 

the variational (P + XS) fusion method, the bands 

2,3,4,5,6,7,8,8a,11,12 of Sentinel-2A to a spatial resolution of 3 

meters (Figure 4) we obtained. 

 

(a) (b)  

(c)  

Figure 4: Results for a sub-area in composition “False Color”: 

(a) PlanetScope (RGB: 4,3,2); (b) Sentinel-2A (RGB: 8,3,2); (c) 

Fused image (RGB: 8,3,2). 

 

To examine the quality of the fused image, four indices were 

evaluated: ERGAS, RMSE, CC and Index of Quality Universal 

(Q) these were calculated for all bands (Table 2). For the spatial 

evaluation each band of the fused image was compared with the 

band Planetscope (PS) image employed in the process, while for 

the spectral evaluation each band of the fused image was 

compared with each band of the Sentinel-2A (S2A) image used. 

 

For the spatial evaluation (Table 2), the index ERGAS indicate 

values between 2.2 and 8 where its ideal value is 0, the best 

band is 4, the bands with the highest values were the fused with 

the bands S2A 20m; for the index CC, its value ideal is 1, all 

the bands have values between -0.5 and 0.4 this indicate that 

there are an inverse correlation in the bands 2,3,4 y 8 and a low 

correlation in the rest. The index Q is 0 for all the bands this 

indicate that spatially none band have high quality, for the index 

RMSE the lowest values are in the band 2,3,4 and 8 this 

indicate that these bands have the least spatial difference with 

the bands of the PS image. In conclusion spatially the bands 

fused with S2A 10m (2,3,4,8) are better than bands fused with 

S2A 20 m. 

 

For the spectral evaluation (Table 2), the values of the indices 

CC y Q are close to 1, this indicate that there is a high 

correlation between the band fused and the bands of S2A 

image, for the bands 2,3,4 and 8 the values index ERGAS are 

higher than for the other bands, for the index RMSE all bands 

have values low this indicate that these have low spectral 

difference with the bands of the S2A image. In general, 

spectrally all the bands of fused image are good. 

 
 Spatial Evaluation Spectral evaluation 

ERGAS CC Q RMSE ERGAS CC Q RMSE 

Ideal 0 1 1 0 0 1 1 0 

B2  7.354 -0.52 -0.01 1.54 9.989 0.995 0.995 1.412 

B3 6.066 -0.59 -0.01 1.54 9.430 0.995 0.995 1.407 

B4 5.475 -0.53 -0.01 1.54 9.445 0.995 0.995 1.409 

B5 8.043 0.297 0 4.004 1.033 0.992 0.993 0.968 

B6 8.043 0.406 0 4.004 0.809 0.992 0.992 1.112 

B7 8.043 0.416 0 4.004 0.786 0.992 0.993 1.195 

B8 2.281 -0.66 -0.04 1.54 7.188 0.995 0.995 1.386 

B8a 8.043 0.426 0 4.004 0.783 0.992 0.992 1.291 

B11 8.043 0.424 0 4.004 0.756 0.993 0.992 1.127 

B12 8.043 0.312 0 4.004 1.033 0.992 0.991 1.072 

Table 2: Quantitative analyses of the image fusion 

 

4.2 Classification Land-Cover (LC) 

Table 3 presents the overall accuracy (OA) results and the 

kappa coefficients for each classification method used. The 

smaller obtained OA is for the method ANN (18.3%) and kappa 

coefficient of 12.8%, likely because of the more limited training 

dataset, which suggests a modification to the parameters and 

training dataset for this algorithm, the methods Boosted DT, 

RF, SVM-Radial and KNN have an OA greater than 80% 

equally a kappa coefficient greater than 80%, except to KNN 

(79.3%). The correlation obtained between these is less than 

75%. The classification derived from SVM-Radial algorithm is 

the most accuracy (Kappa:87%), followed by Boosted-DT and 

RF, although the difference between these is quite small. 

 

The high accuracy of SVM may be attributed to the classifier 

properties, SVMs are able to simultaneously minimize the 

empirical classification error and maximize the class separation 

using various transformations of the class separation 

hyperplane, (Petropoulos et al., 2013). 

 
Method Overall Accuracy (OA) Kappa 

DT 67.80% 65.70% 

Boosted DT 83.60% 82.50% 

RF 83.40% 82.30% 

SVM-Radial 87.80% 87.00% 

KNN 80.60% 79.30% 

ANN 18.30% 12.80% 

Table 3: Classification accuracies for each classification 

method. 

 

The four algorithms with OA greater than 80% produced similar 

maps that were visually consistent with reality (i.e. coherent 

classes and minimal speckling) (Fig. 5) and represented the 

classification land cover for 10 classes: Forest, Grass, Water, 

Bushes, Bare soil, Urban area or built-up, Mining, Secondary 

forest, Clouds and Shadows. 

 

A detailed visual analysis of land-cover classification methods 

employed and that obtained an OA greater than 80% was made. 

From that visual analysis, the boundary of the secondary forest, 

is better defined by land-cover classification based in SVM-

radial than the other three methods. The class mining is uniform 

in all the four methods but in the map obtained with SVM, exist 

a zone where the area of mining is distinguished between 

bushes and grassland, in some areas the shadows was confused 

with the class water for its similar spectral behavior, however 

spectral indices used for landcover classification helped 

distinguish between vegetation and soil types and minimize the 
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influence of shadows. Due to the high spatial resolution and the 

spectral resolution of image fused it is possible to classify and 

separate built-up, bare soil and vegetation in urban areas. In 

general class boundaries in land-cover classification based on 

the fused imagery are more natural, realistic, and have better 

coincide with the reality mainly with the SVM-Radial 

algorithm. 

 

The fusion imagery on land-cover classification let have a good 

delimitation in the classes of soil and vegetation like grassland, 

brushes and forest in pixel-based classifications, thanks to the 

high resolution reduced errors of omission in soil and low 

vegetation classes and reduced errors of commission in built-up 

and forest classes, normally presented in classifications used 

low resolution imagery. 

 
Figure 5: Final classified maps of the study area for methods with overall accuracy greater than 80%. (A) Boosted Decision Tree 

(DT); (B) Random Forest (RF); (C) Support Vector Machine (SVM)-Radial; (D) K-Nearest Neighbors (KNN). 

 

5. CONCLUSIONS 

The focus of this research was to compare different machine 

learning algorithm for pixel classification of imagery fused from 

sensors Sentinel-2A and PlanetScope. The method used for 

image fusion was a variational model for P+XS; the machine 

learning algorithms assessment were six: DT (Decision Tree), 

Boosted DT, RF (Random Forest), SVM radial base (Support 

Vector Machine), ANN (Artificial Neural Networks), KNN (k-

Nearest Neighbors). The results showed that the maps derived 

from four machine learning algorithms have similar accuracy, 

however SVM radial base has the highest accuracy (OA: 87.8%, 

Kappa: 87%) respect to the other methods (Boosted DT, DT, 

RF, ANN y KNN). Nevertheless, the methods RF, Boosted DT 

and KNN shown to be very powerful methods for classification 

of the study area. But as (Maxwell et al., 2018) indicate, the 

best algorithm for a specific task may be case-specific and may 

depend on the classes being mapped, the nature of the training 

data, and the predictor variables provided. 

 

Using image fusion, a good classification was obtained, thanks 

to the high spectral resolution of Sentinel-2A for discriminating 

of the different classes and the high spatial resolution of 

PlanetScope for identifying terrain features and structures. This 

let to improve the classification of remote sensing images, used 

in applications as environmental, ecological, land-use among 

others. Therefore, the methods of machine learning and image 

fusion employed and presented in this paper can easily be 

applied to other studies.  

 

The algorithm ANN obtained the lowest accuracy possibly due 

to limited training data, so a recommendation is having a larger 

set of training data for this algorithm and to achieve a better 

classification accuracy, the recommendation is that for future 

works to employ an ensembled model with the best models, it 

could achieve better prediction. 
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