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ABSTRACT:

Given the wide variety of image classifiers available nowadays, some questions remain about the accuracy and processing time of
Very High Resolution (VHR) images. Another question concerns the use of a Single or Ensemble Classifiers. Of course, the main
factor to consider is the quality of the classified image, but computational cost is also important, especially in applications that
require real-time processing. Given this scenario, this paper aims to relate the accuracy of seven single classifiers and the ensemble
of the same classifiers with the processing time. In this paper the ensemble of classifiers had the best results in terms of accuracy,
however, it comes to processing time, the decision tree had the best performance.

1. INTRODUCTION

When it comes to image classification and image interpretation,
this classification must depict reality as good as possible
(Foody, 2002).

For high spatial resolution images, normally the classification
process of a given input data begins with the segmentation,
whose parameters must be carefully chosen. The segmentation
process merges the pixels that share similar characteristics, this
way the groups end up well distributed in the feature space
(Geotecnologias, 2010). All the pixels in a group bear the
same label, so there are fewer groups than pixels in an image,
consequently, the segmentation-based classification has less
work to do when compared to a pixel-wise approach (Gonzalez,
Woods, 2010).

Once the segmentation parameters are defined and the image is
segmented, the next step is the choice of either supervised or
unsupervised classification. In this work, we opt for supervised
classification. Thus, it is necessary to have training data
to appropriately represent all the classes of the classification
problem (Lacerda et al., 2019).

In the sequel, it is necessary to proceed to the land-cover
classification. Some classification algorithms are largely used
and well accepted by the scientific community, however, new
approaches are popping up (Chaves, 2012). Those new methods
have a large range of accuracy and processing time to generate
the classified image.

In this context, this works aims at comparing eight classifiers
in terms of accuracy and processing time. The input is an
orthophoto mosaic with very high spatial resolution, set up
from images acquired by a small-sized drone. The orthophoto
mosaic embraces rural and urban zones, with different kinds of
land-cover.

2. IMAGE ACQUISITION AND PROCESSING

2.1 Study area

For this work, we chose the municipality of Inconfidentes,
located to the south of the state of Minas Gerais. Figure 1
presents the study area.

Figure 1. Study area - Inconfidentes/MG.

2.2 RPA Used for Survey and Flight Planning

To acquire the images used in this paper, we proceeded to
flights using a small RPA, namely, DJI Phantom 4. This drone
features a 12 MPixel visible-range (RGB) camera, coupled with
a gimbal, which ensures you get your images at the desired
angle and with minimal vibration. The camera also allows
shooting at up to 4K resolution ((Lacerda et al., 2019) and (DJI,
2016).

For flight planning, the Pix4DCapture (Pix4D, 2019) mobile
app was used. The experiment was performed on November
11, 2018, with the conditions:

• Flight Height: 120m (from takeoff point);
• Imaged Area: 1,100 x 1,600 m;
• Front Cover: 80% and Side Cover: 60%;
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• Flight mode: 2D - One-way flight;
• Aircraft speed: 15 m/s;
• Camera Direction: 90o (NADIR); and

During the flight, 721 images were grabbed, and they were
processed in the appropriate software. (Pix4D, 2019). We
used 8 control points and 3 check-points, which yielded an
orthophoto mosaic with about 6 centimeter GSD, as shown in
Figure 2.

Figure 2. Orthophoto mosaic

2.3 Methodology

In Figure 3, a summary of the methodology that has been used
in this work is presented.

Figure 3. Methodology Summary

2.3.1 Image Segmentation. Segmentation seeks to
subdivide the image into smaller regions (or objects). Thus,
the stopping criterion of the algorithm depends on how good
the objects are distinguished according to the necessity of the
problem (Gonzalez, Woods, 2010).

So, segmentation plays a very important role in the realm
of digital image processing, for the refinement degree of the
segmentation enables a proper characterization of the objects in
the image under analysis (Gonzalez, Woods, 2010).

Taking into consideration the results from other scientific
papers (Anjos et al., 2017b), we proceed to the segmentation
of the orthophoto mosaic (item 2.2) in two steps. The first step

is the Multi-resolution Segmentation (MRS), whose parameters
are: Scale = 50; Shape = 0.1; and Compactness = 0.5.

The second step is Spectral Difference Segmentation (SDS),
whose parameter Maximum Spectral Difference = 10. The
output of these two steps is an image with 333,596 segments.

Figure 4 shows the resulting segmented image.

Figure 4. Segmented Image

A. Multi-Resolution Segmentation (MRS). The
multiresolution segmentation technique analyzes the image
objects in different resolution levels. It considers that smaller
objects may be adequately analyzed in finer resolutions,
whereas bigger elements may be handled in coarser resolution.
The segmentation may be accomplished in multiple resolutions,
by varying the segmentation algorithm parameters, which
change the processing resolution (Anjos et al., 2015) and
(Leonardi, 2010).

Basically, the parameters the have influence on MRS are
(Definiens, 2007):

• Scale parameter determines the maximum heterogeneity
for the objects in the resulting image. For heterogeneous
data, the resulting objects according to a given scale
parameter are smaller than the objects from homogeneous
data. When we alter the scale parameter value, the size of
the objects in the resulting image also changes.

• Homogeneity Composition Criterion is used as a
synonym of minimized heterogeneity. In the software
((eCognition, 2019), two parameters define this value:
shape e compactness.

B. Spectral Difference Segmentation (SDS). SDS refines
pre-existing segmentation, and it is not used to generate new
segmentation in the pixel level (Definiens, 2007). SDS analyzes
objects and neighboring segments of the first segmentation
and merges them according to the absolute difference among
their mean grey level. This difference is the maximum
value or a threshold defined by the user according to the
characteristics and features to be distinguished in the image
(Bartani, Rossetti, 2014). This parameter is called Maximum
Spectral Difference (MSD).
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2.3.2 Classes In this work, we consider 21 classes: 1. Water
- Swimming Pool 2. Water - River and Lake 3. Water Box
4. Ceramic Coverage 5. Concrete Coverage 6. Fiber Cement
Coverage 7. Metallic Coverage 8. Rusty Metallic Coverage
9. Plastic and Canvas 10. Asphalt Paving 11. Painted Asphalt
Paving 12. Block Paving 13. Painted Block Paving 14. Ceramic
Paving 15. Concrete Paving 16. Mining Stone 17. Solar Power
Plates 18. Exposed Ground 19. Grass 20. Arboreal Vegetation
21. Shadow

All of those classes are present in the image to be analyzed.
However, we emphasize that this image has only RGB
information, which makes the distinction of some classes with
similar spectral signature more complicated, like Block Paving
and Concrete Paving and Concrete Coverage; or Mining Stone
and Ceramic Coverage.

2.3.3 Sample Collection The classifiers used in this work
perform supervised classification. Thus, it is necessary to have
training data. In total, 951 samples were collected, spread all
over the image and embracing all classes. The samples are
shown in Figure 5.

Figure 5. Sample Collection

2.3.4 Attribute Selection After segmentation, the
following attributes were chosen to be exported for use in
the image classification process: Mean; Standard Deviation;
Brightness; Maximum Difference; Mode; Ratio; Minimum
Pixel Value; Maximum Pixel Value; Contrast to Neighbor
Pixels; HSI; Area, Border Lenght, Lenght, Length/Width;
Width; Asymmetry; Border Index; Compactness; Main
Direction; Rectangular Fit; Shape Index; Texture after Haralick
(GLCM Homogeneity, GLCM Dissimilarity, GLCM Entropy,
GLCM Ang. 2nd Moment and GLCM Correlation) and Class
Name. As most of those features are related to the channels of
the image, and there are three channels and DSM, therefore
there are 68 attributes.

Those features were selected by the fact of being considered
adequate according to their characteristics (Definiens, 2007).

2.3.5 Data set From the segmented image (Item 2.3.1) and
taking into account the features (Item 2.3.4), we exported
the data from both sets used during the process of image
classification: one set containing the attributes for all segments,

but without information about class membership; and a training
set, containing the sample collection segments with attributes
and label information.

Both sets were used during the image classification by the
classifiers presented in item 2.3.6.

2.3.6 Image Classification. The classifiers used are thus:

• Random Forest (RF);
• Decision Tree (C 4.5);
• Multilayer Perceptron (MLP);
• Support Vector Machine (SVM);
• AdaBoost;
• Deep Learning;
• Logistic Model Tree (LMT); and
• Majority Voting.

Those classifiers were chosen because they have been used in
much recent scientific paper concerning image classification.
All of them are implemented in the software we use, namely,
(WEKA, 2019).

A. Random Forest (RF) . RF is a classification algorithm
devised by (Breiman, 2001). It uses lots of unrelated decision
trees. From the whole training data, different data sets are
randomly created, one set for each tree (Anjos et al., 2017a).
According to the literature, the RF accuracy outperforms other
classifiers. It also has good performance in practical problems
(Biau et al., 2008).

B. Decision Tree (C 4.5). Decision Tree assigns a class to
an input sample by using one, or more, decision function in
a successive fashion. This strategy may be illustrated by a
tree-like diagram (Swain, Hauska, 1977). In general, a decision
tree is composed of an initial node, internal nodes, and terminal
nodes. Its more important characteristic is the capacity of
decomposing a complex decision-making process in a bunch
of simpler decisions, which turns the solution easier to interpret
(Safaviam, Landgrebe, 1990).

C. Multilayer Perceptron (MLP). Multilayer Perceptron may
be used for data classification. In a network, each neuron
performs a simple function. The input is a feature vector to
be classified, and the output is the class label. The weights that
connect the neurons are adjusted during the training phase of
the algorithm (Ruck et al., 1989).

D. Support Vector Machine (SVM). SVM is based on the idea
of structural risk minimization. Firstly, SVM maps the input
samples in the feature space and finds a separating hyperplane
in order to maximize the margin between classes. The solution
of the best hyperplane may be written as a combination of some
input samples, called support vectors (Lin, Wang, 2002).

E. AdaBoost. AdaBoost is acronym for Adaptive Boosting.
The algorithm stands out due to its simplicity, flexibility,
and potential (Chaves, 2012). AdaBoost is one of the most
popular algorithms to construct a strong classifier with a linear
combination of member classifiers. The member classifiers
are selected to minimize the errors in each iteration step
during the training process. AdaBoost provides a very simple
and useful method to generate ensemble classifiers. The
performance of the ensemble depends on the diversity among
the member classifiers as well as the performance of each
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member classifiers. However, the existing AdaBoost algorithms
are focused on error minimization problems (An, Kim, 2010).

F. Deep Learning. Deep Learning has been extensively
used in the area of pattern recognition. It consists of a neural
network with more than 3 hidden layers. The weights are
used to initialize a fine-tuning stage for the training of the
deep network. (Revathi, Kumar, 2016). The Weka Deep
Learning package used provides Graphics Processing Unit
(GPU) support and enables Graphical User Interface (GUI)
based training of deep neural networks such as convolutional
and recurrent neural networks(Lang et al., 2019).

G. Logistic Model Tree (LMT). LMT combines logistic
regression and decision tree learning. The logistic regression
may be seen as a statistical technique that aims at creating a
value prediction model. From a sample set, the algorithm uses
a categorical variable, usually binary, to represent continuous
or binary variables. Logistic regression models permit the
selection of relevant features naturally. When compared to
known regression techniques, especially the linear one, logistic
regression has the advantage of having a categorical output
(da Silva Ruiz et al., 2018).

H. Ensemble of Classifiers. Ensemble methods are learning
algorithms that construct a set of classifiers and then classify
new data points by taking a vote of their predictions. Ensembles
can often perform better than any single classifier (Dietterich,
2000). In this paper, the class label is defined by the majority
voting of seven classifiers. That is, one must define which
classifiers participate in voting. Each classifier defines the class
of the input sample. Majority voting has demonstrated great
ability in producing very precise classification rules (James,
1998).

2.3.7 Ground Truth To validate the results, the
ground-truth data was generated by local inspection and
visual interpretation by a specialist team. Extra flights were
necessary to get further information.

With the ground-truth data, the data were analyzed and we
defined 21 classes.

Figure 6 presents the ground truth and the 21 classes.

2.3.8 Random Points To validate the classification results,
we used the software QGIS 2.18 (QGIS, 2019) to spread 4,000
points over the ground-truth image. 2,500 of them lie over
the image, whereas the others are concentrated on the region
without ground-truth.

By intersecting the points of the ground-truth image with the
points of the classified image, it is possible to proceed to the
validation. After that, we calculate the confusion matrix, from
which the Overall Accuracy and Kappa Index are evaluated.

2.3.9 Evaluation of the Classification When we work with
automatic image classification it is necessary to guarantee the
reliability of the output. One way to do so is by using
the confusion matrix, from which it is possible to calculate
various metrics to assess the classification (Bernardes, 2006)
and (Figueiredo, Vieira, 2007).

By analyzing the confusion matrix (Figueiredo, Vieira, 2007)
and (Foody, 2002), it is possible to calculate the Overall
Accuracy, Kappa Index, Producer Accuracy, User Accuracy,

Figure 6. Ground Truth and classes

Inclusion Error, Omission Error, Kappa Index for class, etc. In
this work, we use the Overall Accuracy and Kappa Index.

Overall Accuracy is calculated by the quotient between the sum
of the main diagonal elements and the total number of data
samples (Figueiredo, Vieira, 2007). That is, for the calculation
of Overall Accuracy we take into consideration only the number
of right answers (main diagonal) and the total number of
samples.

Kappa Index (K) is obtained by considering all the entries of
the confusion matrix. Kappa is considered adequate for the
verification of classification precision because it considers the
whole confusion matrix (including the off-diagonal elements).
Therefore, it is different from the overall accuracy (Congalton,
1991).

3. RESULTS AND DISCUSSION

As previously stated, eight classifications were performed.
Figure 7 shows all the classified images from each process.

For each classification, there is a confusion matrix, from which
the Overall Accuracy and Kappa Index are calculated.

Table 1 presents the results: Overall Accuracy, Kappa Index
and the processing time, which is composed of two parts: time
to generate the model and time for classification.

Figure 8 shows a plot that relates to accuracy in each
classification with the processing time of each algorithm.

4. CONCLUSIONS

We can analyze the data from Table 1 under three different
perspectives:

• According to accuracy (Overall Accuracy and Kappa
Index);
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Figure 7. Classified Images

Table 1. Results of Classification.

Processing Time (seconds)
Alg. OA Kappa model classif Total
RF 70.18% 0.648 1.13 162.69 163.82

C4.5 57.75% 0.510 0.27 132.80 133.07
MLP 76.19% 0.713 36.42 158.00 194.42
SVM 72.48% 0.672 0.78 144.46 145.24
Ada 71.00% 0.656 1.17 149.15 150.32
Deep 68.80% 0.633 6.72 239.16 245.88
LMT 68.00% 0.625 18.39 125.07 143.46
Vote 78.36% 0.740 61.04 482.02 543.06

• According to processing time; and
• According to the relation Accuracy x Processing Time.

In terms of accuracy, the Ensemble by Majority Voting had
the best result, with 78.36% of Overall Accuracy and 0.740
of Kappa Index. In a certain way, it was an expected result,

Figure 8. Overall Accuracy x Processing Time

because this algorithm considers the outcome of all other
classifiers, decreasing, therefore, the possibility of classification
errors.

When it comes to processing time, the decision tree had the
best performance (C 4.5), classifying the image in 133.07
seconds. It is worth noting that it took this method only
0.27 seconds to set the classification model, indicating the
simplicity and quickness of this method. In terms of processing
time, we emphasize that the LMT algorithm took the least
time to classify the image, showing that this method has a
great capacity to set the classification model, with a certain
computational burden, but it has great agility in classifying data
a posteriori.

By comparing accuracy and processing time, one may see
that the Majority Voting algorithm had the best accuracy (OA
= 70.18%). However, it had the biggest processing time
(543.06 seconds). On the other hand, the decision tree had
the smallest processing time, but it had the worst accuracy
(57.75%). Random Forest, SVM, and AdaBoost had very
similar accuracy, and their processing time was almost the
same.

Therefore, for the orthophoto mosaic analyzed in this paper and
taking into account all the eight classifiers, we can conclude
that in terms of accuracy the Ensemble by Majority Voting
is the best option (without considering the processing time).
However, if one seeks to have results quickly, the best method
is the Decision Tree. If anyone requires good accuracy, but not
willing to spend much time, one can resort to RF, SVM, and
AdaBoost.

Another possible analysis is about the differentiation of each
class, which is assessed using the confusion matrix. As cited in
item 1, the orthophoto mosaic over which this work was done
has only the RGB information. So, some classes have similar
spectral behavior. But, this analysis was not considered in this
work, and this can be addressed in future works. But yet, it is
possible to conclude that the Overall Accuracy values obtained
substantial agreement considering the number of classes and the
difficulty in characterizing them.
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