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ABSTRACT:  
 
The data developed by the MapBiomas Amazon initiative (http://amazonia.mapbiomas.org/ ) led by the Amazon Geo-referenced              
Socio-environmental Information Network’s (RAISG) is of unprecedented spatial and temporal resolution for the Andes region. It’s                
comprised by a series of annual maps for the years 2000 to 2017 that allow to monitor the extent of transformation in this region                        
using a single regional methodological approach. Several variables were included to solve Andes-specific methodological challenges               
and they represent adaptations of RAISG’s Amazonian methodology to the Andean region. Among such, is the use of the novel                    
NDFIb index (Turpo, 2018), an adaptation of the NDFI index that aims at mapping Andean Wetlands. Glaciers identification was                   
aided by the fractional abundance of snow (Turpo, 2018), as well as small water bodies identification with McFeeters (1996) NDWI                    
water index. This experience unfolds promising accessibility to novel land cover and land use regional reconstructions and                 
comparisons possible only by the use of large-scale cloud-computing data processing tools, open source technology, spatially and                 
temporally comprehensive remote sensing data, along with RAISG’s standardized protocols and frameworks.  
 
 

1. INTRODUCTION 

The Amazon is the world’s largest continuous forest, yet it is           
under threat as it faces large forest cover conversion due to           
deforestation related to agricultural expansion and infrastructure       
development. Given its extent and remoteness, remote sensing        
data is nowadays the primary source of information to monitor          
land cover change in this region. 

The Amazon Geo-referenced Socio-environmental Information     
Network (RAISG) is a consortium of civil society organizations         
from the Amazonian countries oriented towards the       
socio-environmental sustainability of the Amazon. Focused on       
achieving an integral vision of the region, RAISG generates and          
disseminates knowledge, statistical data and geospatial      
socio-environmental information of the Amazon elaborated with       
common protocols and frameworks for all the countries of the          
region. RAISG has prepared various remote sensing-derived       
deforestation maps of the Amazon (RAISG, 2012; RAISG,        
2015) for the periods 2000-2005, 2005-2010, 2010-2015; which        
can be downloaded from RAISG’s website      
(https://www.amazoniasocioambiental.org/es/). 

Recent technological advancements of cloud-based satellite      
imagery processing tools enabled the network to generate a 1st          
Collection of 2000-2017 land cover and land use annual maps          
for the entire Amazon region aimed at understanding the         
processes that are transforming its landscape. Known as the         
MapBiomas Amazon initiative, it is led by RAISG and based on           
the methodology built for the biomes of Brazil by the          
MapBiomas initiative (https://mapbiomas.org/). 

For the MapBiomas Amazon Collection 1 of land cover and          
land use annual maps, RAISG’s mapping limit was extended         
with respect prior mapping efforts to include the watershed         

divides along the Andes, totalling an extension of 8,449,321         
km2, covering the Amazon River basin territories of Bolivia,         
Brazil, Colombia, Ecuador, Guyana, French Guiana, Peru,       
Suriname and Venezuela, including part of the Orinoco river         
basin and its delta, the Cuyuní, Esequibo, Suriname and other          
coastal rivers of the three Guianas (Figure 1).  

 

Figure 1. Territory of the Pan-Amazonian region defined by the 
watershed divide limit, and the countries that comprise it: BOL 

(Bolivia), BRA (Brazil), COL (Colombia), ECU (Ecuador), 
(GUF) French Guiana, GUY ( Guyana), PER (Peru), SUR 

(Suriname), VEN (Venezuela). 

RAISG has defined six biomes or regions with differentiated         
biogeographical, phenological and orographic characteristics     
within the Pan-amazon: Amazon, Cerrado, Chaco-Chiquitano,      
Pantanal, Bolivian Tucumano and Andes. Each possess a series         
of distinct methodological challenges. The latter of which        
corresponds to the study area and focus of this document. Due           
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to the extent of its transformation and its relevance to the local            
and regional water cycle, the temporal monitoring of Andean         
ecosystems is of uttermost importance. 
 
 

2. MAIN BODY 

2.1 Study area 

Covering an area of 261,978 km2 or barely 3.1% of the total            
RAISG geographical scope (Table 1), the Andes portion of the          
Amazon Basin corresponds to the Atlantic slope of the Andes.          
This region is characterized by the presence of a mountain range           
cordillera with the same name that encompasses an area         
between 0°49' North and 20°21' South and acts as a natural           
barrier between the coastal and amazonian regions of the         
continent. Ecologically, its ecosystems range between montane       
to subnival and nival bioclimatic floors (MAE, 2013). Its relief          
is mountainous, with valleys of glacial and/or tectonic origin,         
and its landscape is composed of volcanoes, craters, lava         
deposits and steep hills between which plains and extensive         
inter-Andean valleys are located. Glaciers cover several       
mountain tops, from which thaw forms lagoon systems,        
wetlands and thin water bodies that make up the headwaters of           
the Amazon Basin.  
 

Country Surface (Km2) %  
Bolivia (BOL) 52,244 7 
Ecuador (ECU) 30,189 23 
Peru (PER) 179,545 23 
Total 261,978  

Table 1. Andes region per country as total surface and as a 
percentage of country’s mapped area within RAISG’s limit. 

 
The upper (westmost) limit of the Amazon hydrographic region         
(i.e. the summit of the Andes mountain range) was defined          
based on the official cartographic information of watershed        
divides provided: for Bolivia by the Ecorregion limit (Ibisch         
2003) and Puna Norteña class; for Ecuador, by the SENAGUA          
(2014) and CONALI (2016); and for Peru, by ANA (2014). The           
lower limit was defined following biogeographic criteria       
(Figure 2).  
 

 
Figure 2. Andes biome defined within BOL (Bolivia), ECU 
(Ecuador) and PER ( Peru), for the MapBiomas Amazon 

Collection 1 of land cover and land use annual maps. 
The dominant vegetation physiognomy of the Andes are natural         
grasslands and shrub formations. In Bolivia, this       

grass-dominated cover with scattered bushes is called Puna, and         
it generally grows above 4000 meters of altitude. The soils are           
generally dry, although there are flooded peatlands (bofedales ).        
Andean forest formations occur to a lesser extent. Dry         
inter-Andean forests are characterized by low, deciduous and        
thorny canopies, 3 to 5 m high, with trees and emerging           
columnar cacti of up to 10 m in height, while others are            
semi-deciduous forests, with a tree canopy of 10 to 15 m high,            
and emerging trees that may reach up to 20 m. Polylepis forests            
(kewiñales ), are scattered at over 2500 m of altitude.  
 
The Ecuadorian Andes range between 2300-5800 meters of        
altitude. Montane forests occur in areas of ecological transition         
to amazonian forests at lower altitudes. Canopy height reduces         
with increasing altitude, transitioning to shrub-dominated      
vegetation, natural grasslands and forest relics adapted to high         
altitude conditions. These natural non forest formations are        
commonly known as páramos , and some of them might be          
permanently or seasonally flooded peatlands. The vegetation       
might even become nil at exposed rock outcrops, sand, scars of           
eruptive events and glaciers. Much of this region has been          
transformed to anthropogenic uses, including agriculture,      
pastures, human settlements and infrastructure.  
 
For mapping purposes, the Peruvian Andes were further        
subdivided in 3 sub-regions: Andes, Andean dry forest, and         
Andean transitional forest. The Peruvian Andes have altitudes        
that range between 2000 and 6000 meters of altitude. The area           
is characterized by steep terrains and various altitudinal floors         
that generate different microclimates and therefore very       
different ground cover types. The peruviuan Andean dry forest         
is characterized by scatteredly distributed low canopy arboreal        
communities and rocky outcrops between 500 and 2400 meters         
of altitude. They occur at the base of deep inter-Andean valleys           
of the Marañón, Huancabamba, Pampas, Pachachaca and       
Apurímac rivers. The peruvian Andean transitional forest limits        
with the uppermost Amazon biome limit and receives a strong          
humidity influence from this biome. 
 
2.2 Data 

The mapping data used was obtained from the Landsat Data          
Archive (LDA) provided by NASA and the United States         
Geological Survey (USGS), and accessed through the Google        
Earth Engine (EE) platform (Gorelick et al 2016). The Surface          
Reflectance images belong to the data catalog with Tier 1          
correction level, which were subjected to radiometric       
calibration, orthorectification based on ground control points,       
and digital elevation models to ensure pixel co-registration and         
atmospheric correction. The Landsat images of 30 meter spatial         
resolution cover all the years between 2000 and 2017 and were           
obtained by the Landsat Thematic Mapper (TM), Enhanced        
Thematic Mapper Plus (ETM+) and Operational Land Imager        
and Thermal Infrared Sensor (OLI-TIRS), on board of the         
Landsat 5, Landsat 7, and Landsat 8 satellites. A combination of           
Landsat 5 and Landsat 7 data was also used. 
 
2.3 Data processing 

The MapBiomas processing chain is based entirely on Google’s         
cloud computing technology. Satellite images were processed       
and classified using Google EE Code Editor using the following          
sequence (Figure 3): 1) annual reflectance data mosaics were         
generated; 2) variables were derived from the reflectance data;         
3) spectral collection was conducted to identify the set of          
variables that best discriminates between classes; 4)       

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W12-2020, 2020 
2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS 2020), 22–26 March 2020, Santiago, Chile

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-373-2020 | © Authors 2020. CC BY 4.0 License. 

Primary publication at IEEE Xplore: https://doi.org/10.1109/LAGIRS48042.2020.9165613

 
 

374



 

classification was performed using decision trees; 5) where        
needed, classes that were mapped as cross-cutting subjects were         
integrated into the map; 6) spatial and temporal filters were          
applied to remove noise and fill data gaps; 7) land use change            
and cover maps were published along with statistics.  
 

  
Figure 3. MapBiomas Amazon processing chain. 

The MapBiomas methodology divides the study area into a grid          
of regular charts. The charts are defined based on the grid of            
The International Map of the World, at a 1:250,000 scale. Each           
rectangular chart covers an area of 1°30 'longitude by 1° latitude           
and may require a combination of total and partial Landsat          
images. A total of 55 charts cover the Andes biome (Figure 2).            
Each chart was processed and classified individually. Charts        
shared by more than one sub-region were divided and processed          
separately, facilitating a decision tree parameterization adjusted       
to the land cover specificities of each portion. 
 
2.3.1 Annual mosaics : Annual mosaics of Landsat image       
pixels were generated for each chart or section of a chart.           
Clouds and shadows were masked to ensure only cloud-free         
pixels would be selected from the available images. An optimal          
period for mosaic composition was defined, based on        
seasonality and climatic characteristics of the region, looking        
for the time of the year with the greatest spectral contrast           
between forested and non-forested classes.  
 
For each mosaic, a set of parameters were defined by the           
interpreter: 1) year, 2) initial and end date, 3) sensor, and 4)            
maximum cloud cover. A median reflectance value was        
calculated for each pixel using the above mentioned criteria,         
generating a unique annual value that is subject to classification.          
Each interpreter aimed to achieve the least possible presence of          
clouds and interferences while searching for the greatest        
coverage of data within the defined period.  
 

Figure 4. Annual series of mosaics processed for the Andes 
biome for years 2000 to 2017. 

A total of 990 mosaics were processed for the entire Andes           
region (Table 2, Figure 4).  
 

Charts Total mosaics  
Bolivia 16 288 
Ecuador 8 144 
Peru 31 558 
Total 55 990 
Table 2. Total mosaics processed per country and for the entire 

Andes region for the 2000-2017 time series.  
 

2.3.2 Variables : 28 variables were derived from the       
reflectance data, including: 1) spectral fractions from spectral        
mixture analysis -SMA- (subpixel fractional abundance of       
photosynthetic vegetation -GV-, non-photosynthetic vegetation     
-NPV-, soil, cloud, shade, shade normalized photosynthetic       
vegetation -GVs- and snow); 2) indexes (Normalized Difference        
Fraction Index -NDFI-, Normalized Difference Vegetation      
Index -NDVI-, Modified Normalized Difference Water Index       
(Gao) -NDWI-, Soil-adjusted Vegetation index -SAVI-,      
Modified Enhanced Vegetation Index -EVI2-, Forest canopy       
index -FCI-, Savanna ecosystem fraction index -SEFI-, Wetland        
Ecosystem Fraction Index -WEFI-, Non-photosynthetic     
vegetation and soil addition, Difference Index between green        
vegetation, non-photosynthetic vegetation and soil, Wet      
Vegetation Index -WVI-, Range (amplitude) between minimum       
and maximum NDFI value, Modified Standardized Difference       
Water Index (mcfeeters) -NDWI_mcfeeters-, NDFI adaptation      
for the Andes -NDFIb-; 3) elevation data and masks (Elevation,          
Slope, Hillshade mask, Water mask, Cloud mask, Shade mask,         
Modified shade mask). The Landsat reflectance bands only         
served as input data for the calculation of the variables but not            
as direct classification variables. 

 
2.3.3 Spectral collection. A subset of the most suitable        
variables for class discrimination was supported by a spectral         
collection process executed directly in the EE Code Editor         
(Figure 5) and a class separability analysis. A total of 18           
variables were selected for classification (Table 3). 
  

 
Figure 5. Spectral collection in a region in the Ecuadorian 

Andes using Google’s EE: glacier (red), water (cyan) and non 
vegetated areas (yellow) points over a) reference high resolution 
image and b) a 5-4-3 bands Landsat 7 composite for year 2001. 

 
Variable BOL ECU PER Formula  
GV   X   
NPV  X    
Soil X  X   
Cloud X X X   
Snow X X X   
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GVs X X X 

GV / (GV + NPV + Soil + 
Cloud) 

 
where:  
GV: fractional abundance of 
photosynthetic vegetation, 
NPV: fractional abundance of 
non-photosynthetic vegetation, 
Soil: fractional abundance of 
soil, Cloud: fractional 
abundance of cloud 

(1) 

Shade X X  

100 - (GV + NPV + Soil + 
Cloud) 

 
where:  
GV: fractional abundance of 
photosynthetic vegetation, 
NPV: fractional abundance of 
non-photosynthetic vegetation, 
Soil: fractional abundance of 
soil, Cloud: fractional 
abundance of cloud 

(2) 

NDFI   X 

(GVs - (NPV + Soil)) / (GVs + 
(NPV + Soil)) 

 
where:  
GVs: shade normalized 
fractional abundance of 
photosynthetic vegetation, 
NPV: fractional abundance of 
non-photosynthetic vegetation, 
Soil: fractional abundance of 
soil 

(3) 

EVI2  X X 

(2.5 * (NIR - RED)/(NIR + 2.4 
* RED + 1) 

 
where:  
NIR: Near infrared reflectance 
band, RED: Red reflectance 
band 

(4) 

FCI   X 

(GV - Shade)/(GV + Shade) 
 

where:  
GV: fractional abundance of 
photosynthetic vegetation, 
Shade: see shade (equation 2)  

(5) 

SEFI X X  

(GV + NPVs - Soil) /(GV + 
NPVs + Soil) 

 
where:  
GV: fractional abundance of 
photosynthetic vegetation, 
NPVs: shade normalized 
fractional abundance of 
non-photosynthetic vegetation, 
Soil: fractional abundance of 
soil 

(6) 

WVI  X  

NDVI + NDWI = ((NIR - 
RED)/(NIR + RED)) + ((NIR - 

SWIR)/(NIR + SWIR)) 
 

where:  
NIR: Near infrared reflectance 
band, RED: Red reflectance 
band, SWIR: Shortwave 

(7) 

Infrared reflectance band  

NDWI 
mcfeeters X  X 

(GREEN - NIR)/(GREEN + 
NIR) 

where:  
NIR: Near infrared reflectance 
band, GREEN: Green 
reflectance band 

(8) 

NDFIb X  X 

GVs- (NPV + Soil + Snow)/ 
GVs + (NPV + Soil + Snow) 

 
where:  
GVs: shade normalized 
fractional abundance of 
photosynthetic vegetation, 
NPV: fractional abundance of 
non-photosynthetic vegetation, 
Soil: fractional abundance of 
soil, Snow: fractional 
abundance of snow.  

(9) 

Elevation X X X 
Elevation from Digital 
Elevation Model (Jarvis et., al, 
2008) 

 

Slope X X X Slope derived from the Digital 
Elevation Model (fuente)  

Water 
mask  X  

(GV ≤ 10) and (Shade ≥ 75) 
and (Soil ≤ 5) 

 
where:  
GV: fractional abundance of 
photosynthetic vegetation, Soil: 
fractional abundance of soil, 
Shade: see shade (equation 2) 

(10
) 

Shade 
mask X  X   

Table 3. Spectral collection results: set of variables most useful 
for class discrimination per country. 

 
2.3.4 Classification. The classification method adopted by      
MapBiomas contemplates the use of empirical decision trees        
(Figures 6-8) for pixel-to-pixel classification, where class       
discrimination is based on the value of the variable in relation to            
the threshold established by the interpreter (a process called         
parameterization). The classes that we were able to discriminate         
within the Andes biome using MapBiomas legend are detailed         
in Table 4.  

 
Figure 6: Decision tree used to map the Bolivian and Peruvian 

Andes. 
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Figure 7: Decision tree used to map the Ecuadorian Andes. 

 

 
Figure 8: Decision tree used to map the Peruvian Andean dry 

forest region. 
  

Class BOL ECU PER 
Natural forest  X X X 
Non forest natural flooded formation   X 
Grassland   X 
Other non forest natural formation X X X 
Agriculture and Pasture X X X 
Non vegetated area X X X 
River, Lake and Ocean X X X 
Glacier X X X 
Table 4. Classes mapped within the Andes biome per country. 

2.3.5 Cross-cutting subjects. The ‘River, Lake and Ocean’       
class was independently mapped in the peruvian Andes to         
improve water body classification results. The results were later         
integrated with the rest of the classification maps.  
 
2.3.6 Spatial and temporal filters. The spatial filter aims        
to foster the spatial consistency of the data. Isolated or border           
pixels may adopt the most abundant surrounding class value         
based on proximity rules. The filter size (3 or 5 pixels) varied            
depending on the mapped classes. Temporal filters are intended         
to reduce temporal inconsistencies (i.e. changes in coverage that         
are not possible or not allowed) based on predefined rules. It           
also helps to reduce errors due to cloud, haze, and data gaps.            
Where data gaps remained, the last available information for         
that specific pixel was applied to the unclassified years.  
 
2.3.7 Maps and statistics. Annual (2000-2017) land cover       
and land use maps for the Amazonian Andes region are          
published in http://amazonia.mapbiomas.org/ along with     
statistics for each year (Figure 9).  
 

 
Figure 9: MapBiomas Amazon platform 

 
 

3. CONCLUSIONS 

The data developed by the MapBiomas Amazon initiative is of          
unprecedented spatial and temporal resolution for the Andes        
region. No other initiative before has generated a series of          
annual maps that allow to monitor the extent of transformation          
in this region using a single methodological approach that         
allows for regional comparisons.  
 
MapBiomas Amazon’s Collection 1 of land cover and land use          
2000-2017 annual maps are possible only by the use of Google           
EE platform large-scale processing capabilities, open source       
technology, spatially and temporally comprehensive remote      
sensing data form the Landsat missions, along with RAISG’s         
standardized protocols and frameworks. This experience      
unfolds promising accessibility to novel regional      
reconstructions and comparisons of the region’s past dynamics        
needed to project present and future actions.  
 
Even though RAISG has an extensive mapping experience in         
the Amazon Basin, the Andes region represented and extension         
to its mapping limit and due to its land cover particularities, it            
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was not challenge free. This region presents extensive data         
coverage limitations mainly due to persistent cloud presence.        
Spectral ambiguity between areas of agricultural use and        
non-forest natural formations (natural grasslands) represented      
one of the main classification challenges. Where known        
agricultural use altitude limits existed, the use of elevation data          
supported class discrimination. 
 
Spectral mixture analysis (SMA) has proven useful at        
overcoming conventional image processing limitations in      
lower-altitude evergreen Amazon rainforest (Souza et al., 2005)        
and it had been widely used by prior RAISG’s forest loss           
mapping efforts (RAISG, 2012; RAISG, 2015). However, the        
Andes posed region-specific methodological challenges that      
required the network to adapt its methodology to the Andes          
region.  
 
Andean Bofedales discrimination was possible with the use of         
the novel index NDFIb (Turpo, 2018), an adaptation of the          
NDFI index that aims at mapping Andean Wetlands. Glaciers         
identification was aided by the fractional abundance of snow         
(Turpo, 2018), as well as small water bodies identification with          
McFeeters’ (1996) NDWI water index.  
 
Andean ecosystems are extremely fragile due to the extent of          
anthropogenic transformation related to human settlements,      
overgrazing of natural areas, mining concessions, among other        
pressures, along with global disturbing forces such as climate         
change, as it's now noticeable seen (visually and quantitatively),         
for example, by glacier retreat, ecosystem degradation, soil        
erosion, etc. The Andean region plays a critical role regionally          
and locally, it’s key for ecosystem services provision, such as          
regional water cycle maintenance, upon which many Andean        
cities depend for water, food and energy security.  
 
Many local and regional studies can greatly benefit from this          
data. In the near future, we aim to expand our mapping and            
monitoring efforts to a more comprehensive time series        
considering all Landsat data available between 1985 and 2018,         
using machine learning classification algorithms and      
independently estimating the precision of our data. 
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