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ABSTRACT: 

The accelerated growth of cities since the middle of the last century occupies a prominent place in urban agendas. The development 
of planning strategies depends on the knowledge and understanding this phenomenon. Therefore, identifying the modification 
pattern in the spatial configuration is of paramount importance. In this sense, the high level of detail offered by remote sensing 
technologies makes it possible to estimate the distribution of human settlements and their relationship to other coverages. The 
information obtained allows to analyze spatial contiguity and general expansion but other indicators are needed to identify spatial 
singularities. This work aims to present a compaction indicator and fragmentation indicator, useful for identifying local configuration 
patterns and their temporal variation. The study area consists of the Moreno, Pilar, Gral Rodriguez, Luján and Mercedes 
municipalities of the metropolitan area of Buenos Aires (AMBA) for the period 1986-2019. The results indicate an increase in 
impervious surfaces higher than 300% in this period and the detection of new urban centres in those municipalities. In the future it is 
hoped to replicate the techniques presented throughout the AMBA in order to contribute to medium and long-term territorial 
planning. 

* Corresponding author 

1. INTRODUCTION

1.1 Urban expansion 

Since the middle of the last century, the growth of cities has 
been of relevance in urban agendas, especially in Latin America 
metropolitan areas. This phenomenon brought together experts 
from academia and politics since the 1950s, who discussed how 
to measure, characterize and explain spatial processes. In this 
context, cartography is a key instrument for characterizing sizes, 
location, growth trends and other spatial variables (Favelukes, 
Novick, & Zanzottera, 2016). 

In recent decades, the evolution of computer resources for data 
management and the availability of satellite information have 
facilitated the study and monitoring of land uses. The 
continuous and systematic collection of data has made it 
possible to describe and quantify the evolution of human 
settlements with a high degree of precision (Masek, Lindsay, & 
Goward, 2000; Schneider & Woodcock, 2008; Taubenböck et 
al., 2012; Zhang & Xu, 2018). 

While obtaining land cover is in itself a task that includes 
precise methods, after obtaining them the analysis of land use 
change requires the calculation of comparison metrics. Metrics 
describe the pattern of change in urban configurations; help to 
improve the measurement of density of cities and to prevent the 
cost of infrastructure provision. The most commonly used 
metrics in the study of urban environment fragmentation come 
from the biological sciences and evaluate open or vacant spaces 
with respect to their neighbourhood (Angel, 2010). 

However, few metrics allow the analysis of similar objects at 
different scales. The most explored is the fractal dimension (D) 

that indexes and hierarchically orders land occupation patterns 
(Shen, 2002; Encarnação, Gaudiano, Santos, Tenedório, & 
Pacheco, 2012). D is able to identify areas with a high degree of 
irregularity and fragmentation, as well as those with greater 
agglutination and compaction. 

Applying metrics at different scales and combining them with 
demographic and economic information would make it possible 
to understand the particularities of urban transformation and be 
able to predict its behaviour (Longley, P A, 1999; Swenson & 
Franklin, 2000). This article presents descriptive statistics based 
on fragmentation metrics calculated in peripheral municipalities 
of Metropolitan Area of Buenos Aires (AMBA) in the period 
1986-2019.     

1.2 Study Area 

The study area is the northwest of AMBA and includes the 
municipalities of Mercedes, Luján, Gral Rodriguez, Pilar and 
Moreno (Fig. 1). The activities developed in the area are related 
to agricultural and industrial production (67.08% and 4.14%, 
respectively) and to urban centres (26.23%) (see Appendix Fig 
7 for details). Data collected from the last National Census of 
Population indicate a sustained population growth from 
610,581 people in 1991, to 843,663 in 2001 to 1,018,180 in 
2010 (National Institute for Statistics and Census, n.d.). Most of 
the inhabitants are concentrated in the cities of Moreno (45.5%) 
and Pilar (25%). 
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Figure 1. Map of the study area 
 
 

2. MATERIAL AND METHODS  

2.1 Land-use change analysis 

Impervious surface is the main indicator of land-use change. It 
is estimated using supervised classification techniques applied 
on LANDSAT (USGS) satellite images. The years under 
consideration were 1986, 2001 and 2019; we selected one 
cloud-free image per year. The first two images were acquired 
from the Thematic Mapper sensor and the last from the 
Operational Land Imager (OLI) sensor. The Landsat imagery 
(reflectance at the top of the atmosphere, TOA) was obtained 
from the Google Earth Engine platform (Gorelick et al., 2017). 
 
A normalized spectral difference vector (NDSV) was 
constructed prior to the classification to maximize differences in 
reflectance between land cover classes (Eq. 1) (Angiuli & 
Trianni, 2014; Patel et al., 2015). 
 
NDSVij= (bi-bj)/(bi+bj)    (1) 
 
where  bi, bj = the band pairs for each image 
 
The supervised classification of the NDSV images was then 
performed applying Support Vector Machine -SVM- algorithm 
(Burges, C. J. C., 1998) developed in ENVI.  
 
The training areas were obtained using hyperspectral and Very 
High Resolution (VHR) data. The first were provided by Earth-
Observing One (EO-1) Hyperion Imaging Spectrometer. The 
most spectrally pure pixels (endmembers) were extracted using 
the Pixel Purity and N-Findr algorithms. After, we computed 
Linear Spectral Unmixing to determine the relative abundance 
of materials that are depicted on hyperspectral imagery. Finally, 
pixels with a purity percentage higher than 75% were chosen 
for each detected endmember (Flores, 2017). 
 
The second type of data was provided by QuickBird satellite 
imagery extracted from Google Earth ProTM. We assumed that 
the areas with some kind of building or with street layouts 
observed in past images were still present. To confirm that these 
areas had the same type of land cover in 1986 and 2001, we 
obtained official information on land cover/use during this time 
period. Satellite-based training set were regrouped into five 
classes: 1) impervious surface (-household roof made of tiles, 
concrete blocks, corrugated zinc sheets, or with radiant barrier-, 
pavement and parking lot), 2) tree, 3) herbaceous vegetation, 4) 
water body and 5) bare soil (including unpaved road). To 
identify the pervious surface (classes 2-5); we examined the 

complete imagery catalogue and selected areas that remained 
unchanged in 1986, 2001 and 2019. As a result, 65% of the 
samples were selected for training and the remaining samples 
were used to validate the obtained classification. 
 
To estimate the impervious surface temporal variation, images 
were reclassified according to the binary categories pervious 
(value = 0) and impervious (value = 1). This raster set will be 
used to compute urban fragmentation indexes. 
 
Geoprocessing was performed using ArcGIS 10.0 (ESRI); 
vectors and imagery were previously projected onto UTM 21S 
datum WGS84 coordinate system (EPSG: 32721). 
  
2.2 Urban fragmentation and its measurement 

2.2.1 The core open space ratio 
 
The Open Space is a pixel that is surrounded by more than 50% 
of its neighbours built in a circle area of 1 km2. (Angel, 2010). 
In this case, we use images with pixels of 30m side, then there 
are 980 neighbourhood pixels.  
 
At the same time, the built-up areas of cities are classified into 
three types: (1) urban cores, (2) suburban areas, and (3) rural 
areas. Urban core pixels were defined as built-up pixels 
surrounded by 50 percent of more built-up pixels in a 1 km2 
circle around them. Suburban pixels were defined as built-up 
pixels surrounded by 10 to 50 percent built-up pixels in a 1 km2 
circle around them. Rural pixels were defined as built-up pixels 
surrounded by less than 10 percent built-up pixels in a 1 km2 
circle around them. These classifications are distinctions 
between urban, suburban, and rural areas based solely on their 
level of fragmentation and not on the respective densities in 
their built-up areas.  
 
The Core Open Space Ratio is estimated using the Open Space 
pixels detected by each core type: Urban, Suburban and Rural.  
The metric applied on urban core constitutes a useful metric for 
measuring fragmentation. It focuses attention on the urban core 
as a whole while leaving aside for the time being the 
fragmentation of open space in suburban areas. 
 
2.2.2 Fractal dimension and entropical regimes 
 
Mathematically, fractal dimension (D) is a number ranging 
between 0 and 2 that points out how hierarchically organized is 
a given pattern of built up area (Encarnação et al., 2012). The 
total area is divided into cells of 1km side. A particular D is 
assigned to each cell, which is computed by using the box 
counting algorithm (Mandelbrot, Macmillan,1983). 
 
Entropy is the physical notion related to the uncertainty degree 
about a given system. A D-dependent entropy function S(D) is 
defined by (Encarnação et al., 2012) and provides a natural 
classification for the built-up area patterns of the cells. 
According to (Gaudiano, 2015), minimum 
uncertainty/uncontrollability of patterns corresponds to D=0 
and D=2, which represents the almost rural (empty) and 
compactified urban patterns, respectively. Extreme values are 
predictable, in the case of the rural cells because they do not 
show substantial changes of the built areas in a long time. On 
the other hand, highly urbanized compact cells are also highly 
predictable because there is almost no room for new built-up 
areas, and consequently there is going on an essentially non-
dynamical situation inside of those cells.  
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In contrast, intermediate values of D correspond to the most 
diverse possible fractal patterns of built areas (past, present or 
future): this means that the knowledge about D (and the built-up 
area) is scarce, and consequently, to lead, controlling or 
predicting the behaviour of the built-up areas inside of the cell 
becomes a harder task (Gaudiano, 2015). In addition, since 
S(D) is non-monotonous (Fig. 2) the rate of change with respect 
to D also plays and important role (Gaudiano, 2015). Thus, for 
D<1.78 entropy increases. For D>1.78, entropy reduces 
dramatically, being the patterns every time more predictable as 
they compactify. In terms of controllability, some further 
regimes can be identified (Gaudiano, 2015). On range 
1.26<D<1.54 uncertainty is increasing, and is still relatively 
low. For 1.54<D<1.78 uncontrollability is high and increasing. 
Thus D=1.54 points out an entropical limit, in which the 
chances of controlling the cell built up area system are not low. 
When D>1.78, applying any governmental policy could be 
useless or, in principle, against the natural system tendency.  
 
The algorithm to compute D was developed in Octave (Eaton, 
Bateman, Hauberg, & Wehbring, 2017). 
 

 
 

Figure 2. Types of built-up areas. Source: (Encarnação et al., 
2012) 

 
 

3. RESULTS 

3.1 Extraction of impervious surfaces  

The overall accuracy of extraction of impervious surfaces is 
between 79.9% and 98.03%. Table 1 shows the quantification 
of impervious surfaces in the projected urban area and the 
percentage of relative increase per period.  
 
Results indicate that the five studied urban areas underwent a 
continuous impervious surface expansion during the period 
under consideration. The highest increment is detected between 
2001 and 2019 for Gral Rodriguez (173%), and then between 
1986 and 2001 for Moreno (145%). Figure 3 (top), shows a 
contrast between pervious and impervious surfaces obtained in 
1986 and 2019.  
 
The municipalities located in the northeast present new 
impervious areas, in line with the means of transport (highways 
and railways) that connect them with the federal capital. The 
new centres have commercial and industrial characteristics that 
contrast with the idea of dormitory cities becoming a centre in 
its own right. 
 
 
 

Municipality 
Impervious surface (%) Total surface 

(km2) 1986 2001 2019 
Mercedes 0.46 0.58 0.89 1050.8 

Luján 1.04 1.28 2.20 755.7 
Gral. Rodríguez 0.87 1.18 3.22 383.5 

Moreno 4.71 11.57 22.77 185.9 
Pilar 2.38 4.63 10.26 367.2 

Table 1. Impervious surface in urban areas per year 
 
3.2 Fragmentation indicators 

The first fragmentation index computed was Core Open Space 
Ratio by the built-up area types. Following Angel (2010), we 
categorized the study area in Urban Core, Suburban Core and 
Rural by year (Fig 3 bottom). The results show the continuous 
formation of new urban centres in the municipalities closest to 
the federal capital: Moreno and Pilar. The first shows two urban 
centres in 1986 and twelve in 2019. The second shows one 
centre in 1986 and seven in 2019. Both General Rodriguez and 
Lujan presented two urban centres in 2019. Only Mercedes 
presented one urban centre in the evaluated period. 
 

 
 

Figure 3. Spatio temporal types of built-up areas in 
municipalities 

 
Then, the proportion represented by the categories of built-up 
areas in each party was calculated (Fig 4). 
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Figure 4. Built-up areas ratio by municipality 
 

In this case Moreno present the highest variability respects 
urban and suburban cores (1986: 1817.4ha; 2001: 5077.3ha; 
2019: 8538.2ha), followed by Pilar (1986: 1247.2ha; 2001: 
4188.4ha; 2019: 10175.3ha). The others municipalities does not 
present significant changes in their total built up areas by year. 
Table 2 shows the Core Open Space Ratio by the urban and 
suburban cores. 
 

 
Municipality 

 
Years 

Core Open Space Ratio 
Urban core Suburban core 

Gral Rodriguez 
1986 0.23 0.73 
2001 0.30 0.72 
2019 0.33 0.76 

Lujan 
1986 0.25 0.75 
2001 0.25 0.73 
2019 0,29 0,73 

Mercedes 
 

1986 0,14 0,74 
2001 0,18 0,73 
2019 0,22 0,72 

Moreno 
1986 0,24 0,76 
2001 0,31 0,71 
2019 0,31 0,70 

Pilar 
1986 0,20 0,77 
2001 0,26 0,76 
2019 0,35 0,73 

Table 2. Core Open Space Ratio in built-up areas 
 
The values indicate that the 1986 urban cores presented a core 
open space ratio smaller than the present ones. It means that the 
increase of impervious surface implies the variability of urban 
voids. In the cases of Pilar and Moreno, which are the 
municipalities that have formed more urban cores, also present 
the largest open spaces ratio (0.35 and 0.31, respectively). Their 
suburban cores, present an open space ratio higher than 70 
percent along the time.  

The second metric compute was the fractal dimension (D). The 
Fig 3 (middle) shows the spatio–temporal evolution in terms of 
D. The global results indicate that this group of municipalities 
present an increment of D values:  0.24 (DS: 0.40) in 1986, 
0.27 (DS: 0.45) in 2001 and 0.42 (DS: 0.56) in 2019. Those 
global results are less than values found by Buzai (2011) for the 
Great Buenos Aires in 1991 (D= 1.39) and confirms the need 
for more accurate metrics.  
 
Maps present large areas with D values less than 1, which still 
denotes the presence of small dispersed constructions. On the 
other hand, the presence and growth of the proportion of areas 
with urban regime type 4 (rapid growth and consolidation) is 
constant. It should be noted that in 1986 the compact areas 
detected (Type 5) overlapped with the old urban centres that 
currently fulfil administrative functions. The 2019 map presents 
new compact areas in both Moreno and Pilar. In the first, their 
activities are associated with residential and commercial use, 
while in the second, industrial use is added. 
 
In order to evaluate the behaviour of built area vs D we 
extrapolated the data to a pixel side of 15 m by multiplying each 
area A by 2D (Gaudiano, 2015). Fig. (5) shows that the built 
area does not follow an one-to-one correspondence with respect 
to D, but it is bounded by two function L(D) (Eq. 2) and U(D) 
(Eq. 3). Both mathematical properties are consistent with 
Encarnação (2012) and Gaudiano (2015).  
 
L(D)= 2mD (2) 
U(D)= λ22m(D-2)  (3) 
 
where  m=5; λ=66.6 
 

 
 

Figure 5. Log-scale of built-up area in each cell vs. fractal 
dimension (D). Note there is not an one-to-one correspondence: 

the built up area range is bounded by L(D) and  U(D) . 
 
Also, the situation of each municipality is analysed, and there is 
evidence of unequal transformation. According to the results 
obtained for the years 1986, 2001 and 2019 the values of global 
D for each municipality are:  
Moreno: 0,74 (DS: 0,48); 0,99 (DS: 0,55); 1,32 (DS: 0,50)  
Pilar: 0,55 (DS: 0,43); 0,65 (DS: 0,52); 0,95 (DS: 0,54) 
Gral. Rodriguez: 0,23 (DS: 0,38); 0,24 (DS: 0,37); 0,49 (DS: 
0,52)  
Mercedes: 0,08 (DS: 0,25); 0,08 (DS: 0,25); 0,13  (DS: 0,33) 
Lujan: 0,20 (DS: 0,37); 0,20 (DS: 0,38); 0,31 (DS: 0,47) 
To visualize the great variability along the time and by 
municipality we plot rate of urban regime types (Fig 6). 
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Figure 6. Built-up areas based on urban regimes 

The municipalities with the greatest variability and diversity of 
urban regimes are Moreno and Pilar. The proportion of the 
compact or consolidated regime (Type 5) in Moreno has 
increased from 0.5% to 14.6% and its zones with dispersed 
constructions (Type 1 and 2) have decreased from 86.8% to 
32.8%. In addition fast-growing areas with metastatic 
consolidation (Type 4) have increased from 4.6% to 29.8%. In 
the case of Pilar, dispersed constructions have predominated at 
all times (from 95.0% to 66.7%). Although its compact zones 
represent less than 4.0% yet, a growth of the type 4 urban 
regime zones (from 0.7% to 10.7%) is detected. According 
Encarnação (2012) types 3 and 4 are the regions where planning 
must act more effectively. Indeed, such proximate planning will 
ensure well-designed transitions into more compact 
configurations. 

Lastly, the response of fractal dimension is calculated by zoning 
class (Ley 8912/77, 1977): Agricultural (Ag), Commercial (Co), 
Industrial (In), Medium density residential (MDR), Low density 
residential (LDR), Future development areas (FDA). Table 3 
shows fractal dimension mean by class zoning. 

Zoning 

Gral 
Rodriguez Lujan Mercedes Moreno Pilar 

1986 2019 1986 2019 1986 2019 1986 2019 1986 2019 
Ag 0.18 0.37 0.10 0.16 0.06 0.09 0.36 0.96 0.42 0.71 
Co - - 1.85 1.86 0.88 1.11 0.75 1.41 0.77 1.17

FDA 0.47 0.89 - - 0.30 0.76 0.70 1.64 0.95 1.46 
In 0.34 0.94 0.45 1.08 0.06 0.35 0.59 1.24 0.69 1.11 

LDR 0.28 0.66 0.24 0.36 - - 0.40 0.96 0.49 0.96 
MDR 0.80 1.21 0.75 1.15 0.73 1.17 0.93 1.53 0.73 1.19 

- No data 
Table 3. Fractal dimension by zoning.

The analysis of fractal dimensional means also shows the 
diversity of spatial configuration by types of land use. For 
example, in the agriculture category (Ag) there are values of D 
closer to 1 in Moreno and Pilar, due to the intensive 
development of the activity in greenhouses.  

The commercial category (Co) in 2019 reaches values of D that 
indicate a metastatic growth still controllable (Type 3), only in 
the case of Lujan this zone is presented as compact (Type 5) 
since 1986.  

The FDA category presents significant changes in Moreno from 
a dispersed urban regime (Type 1) to another in metastatic 
growth (Type 4). 

The industrial activity (In) presents a maximum D associated 
with dispersed constructions (Type 2) as a result of municipal 
and provincial promotion and regulation. 

Finally, the results on residential areas are consistent with 
provincial planning. On the one hand LDR presents values of D 
less than 1 which describes a regime of dispersed constructions 
(Type 1). On the other hand, MDR presents values higher than 
LDR and only in the case of Moreno presents an urban regime 
of controllable metastatic growth (Type 3). 

4. DISCUS ION

The Core Open Space Ratio and Fractal Dimension coincide 
spatially in the detection of urban cores and compact zones. 
Although they differ in the proportion of urban centres, D 
presents different degrees in the last range of compaction. 
According to the Core Open Space Ratio, these areas can be 
considered suburban and, consequently, their open spaces must 
be considered as a strip in transition to consolidation.   

Both metrics could be applied in different periods of analysis 
however the fractal dimension gives a precise description of the 
sequence of the occupation of space. If rapid category changes 
are detected, it is possible to predict their evolution and to limit 
the space where the phenomenon of growth or consolidation 
develops.  

This work completes and complements the results of Angel 
(2010) and Buzai (2011), where global data are presented for 
different agglomerations, also provide measures of growth or 
consolidation in their peri-urban areas. 

Future work is expected to replicate classification techniques 
throughout the metropolitan areas of Buenos Aires and estimate 
fragmentation metrics that support fair and equitable spatial 
planning in the medium and long term. 
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APPENDIX  

 
 
Figure 7. The urban zoning in the study area (Ley 8912/77, 
1977) 
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