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ABSTRACT: 

 

Pasture biomass information is essential to monitor forage resources in grazed areas, as well as to support grazing management 

decisions. The increasing temporal and spatial resolutions offered by the new generation of orbital platforms, such as Planet CubeSat 

satellites, have improved the capability of monitoring pasture biomass using remotely-sensed data. In a preliminary study, we 

investigated the potential of spectral variables derived from PlanetScope imagery to predict pasture biomass in an area of Integrated 

Crop-Livestock System (ICLS) in Brazil. Satellite and field data were collected during the same period (May – August 2019) for 

calibration and validation of the relation between predictor variables and pasture biomass using the Random Forest (RF) regression 

algorithm. We used as predictor variables 24 vegetation indices derived from PlanetScope imagery, as well as the four PlanetScope 

bands, and field management information. Pasture biomass ranged from approximately 24 to 656 g.m-2, with a coefficient of variation 

of 54.96%. Near Infrared Green Simple Ratio (NIR/Green), Green Leaf Algorithm (GLA) vegetation indices and days after sowing 

(DAS) are among the most important variables as measured by the RF Variable Importance metric in the best RF model predicting 

pasture biomass, which resulted in Root Mean Square Error (RMSE) of 52.04 g.m-2 (32.75%). Accurate estimates of pasture biomass 

using spectral variables derived from PlanetScope imagery are promising, providing new insights into the opportunities and limitations 

related to the use of PlanetScope imagery for pasture monitoring. 

 

 

1. INTRODUCTION 

Monitoring pasture biomass is fundamental to understand the 

spatio-temporal dynamics of forage resources in grazed areas, 

and to support grazing management decisions (Andersson et al., 

2017). Pasture monitoring at a fine scale based on field 

measurements are time-consuming and often spatially-limited 

based on sampling point distribution and intensity, and unlikely 

to give representative information of large pasture areas (Legg 

and Bradley, 2019).  

 

An alternative approach to estimate pasture biomass is utilizing 

remotely-sensed data (Punalekar et al., 2018). Pasture biomass 

estimation based on remote sensing has been undertaken for 

several years, and numerous studies show a good correlation 

between field measurements and spectral variables derived from 

satellite data (Edirisinghe et al., 2011; Pullanagari et al., 2018; 

Wang et al., 2019). However, the temporal frequency of satellite 

data and the spatial resolution needed to capture the biomass 

variation between or within typical-sized paddocks (< 20 ha) 

have been an obstacle to achieve effective pasture monitoring 

using the available satellite data sources, namely MODIS (250 m 

near daily from 2000), Landsat 8 OLI (30 m every 16 days from 

2013) and Sentinel-2 (10 m every 5 days from 2015). 

 

The increasing temporal and spatial resolution offered by the new 

generation of satellites, so-called constellations of nano-
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satellites, such as Planet CubeSat satellites, may overcome this 

spatio-temporal limitation by using multiple small satellites to 

collect global high spatial resolution data with very high temporal 

resolution. Furthermore, these nano-satellites may advance the 

field of crop monitoring by offering an unprecedented 

combination of high temporal (daily) and high spatial (3 meters) 

resolutions imagery (Planet Team, 2019). 

 

Machine learning algorithms have been increasingly used for a 

wide range of tasks including pasture monitoring (Parente et al., 

2017, Liu et al., 2019, Wang et al., 2019). In this context, using 

the Random Forest (RF) machine learning algorithm, we 

investigated the potential of spectral variables (spectral bands and 

vegetation indices) derived from PlanetScope imagery associated 

with field management information to predict pasture biomass in 

an area of Integrated Crop-Livestock System (ICLS) in the 

western region of São Paulo State, Brazil 

 

2. METHODOLOGY 

2.1 Study area 

Our study area includes four fields of approximately 50 ha each, 

totalizing 200 ha, located in the western region of São Paulo 

State, Brazil (Figure 1). The area is split in 13 paddocks on which 

grazing livestock (cattle) are rotated between paddocks and fields 

throughout the season. This area has been managed as an ICLS 
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based on the rotation of cultivated pasture during the winter 

season, and soybean cultivation in the summer season, with 

pasture being the focus of this study.  

 

The investigated pasture is composed of a mixture of brachiaria 

(Urochloa ruziziensis) and millet (Pennisetum glaucum), sown at 

a proportion of 15 kg.ha-1 of millet and 5 kg.ha-1 of brachiaria in 

a spacing of 17 cm between rows. Pasture planting began on 

March 28th, after soybean harvest, and lasted until 6th April 2019. 

 

According to the Köppen climatic classification system, the 

climate in this region is Aw, classified as a tropical savanna, with 

drier months during the winter (Alvares et al., 2013). The mean 

annual rainfall varies between 1,200 mm to 1,400 mm, 

concentrated in the months of December and January. 

 

 

Figure 1. Location of the study area in western region of São 

Paulo (SP) state, Brazil, and the sampling design. 

  

2.2 Field data collection 

One hundred sampling points were randomly distributed within 

the study area. In each of these points, pasture biomass was 

manually harvested based in a frame of 1 x 1 m. The fresh 

biomass was weighted in the field using a hanging scale. To 

determine dry mass (g.m-2), the fresh biomass was dried at 65°C 

in the laboratory for 72 hours.  

 

Measurements of on-site pasture biomass were conducted at five 

dates (designated from now on as Date 1 to Date 5) during the 

growing season (from May to August of 2019): (Date 1) 17th 

May, (Date 2) 25th May, (Date 3) 18th June, (Date 4) 14th July, 

and (Date 5) 12th August 2019. These dates were defined in order 

to capture different phases of pasture growth and biomass 

availability, as well as in function of the entry and exit of animals 

in the paddocks. The field measurement dates and the numbers 

of sampling points measured in each field campaign varied 

according to paddock rotation, totalizing 288 field-sampled 

points. 

 

2.3 Remote sensing data collection and preprocessing 

PlanetScope multispectral imagery were acquired for this study. 

The selected cloud-free scenes covering the study area were 

acquired on dates that most closely coincided with the field 

campaign dates (i.e., 20th May 2019, 27th May 2019, 15th June 

2019, 11th July 2019, and 10th August 2019, respectively). 

 

PlanetScope is a satellite constellation comprising over 120 

CubeSats 3U form factor (10 cm by 10 cm by 30 cm), called 

“Doves”, which have the capability to image all of the Earth’s 

land surface on a daily basis. The PlanetScope satellites have four 

spectral bands: blue (B: 455–515 nm), green (G: 500–590 nm), 

red (R: 590–670 nm) and near infrared (NIR: 780–860 nm) with 

a spatial resolution of ∼3m (Planet Team, 2019). 

 

We used the Planet Surface Reflectance (SR) Product, which is 

derived from the standard Planet Analytic Product (Radiance) 

and processed to top of atmosphere (TOA) reflectance and then 

atmospherically corrected to bottom of atmosphere (BOA) 

reflectance using the 6SV2.1 radiative transfer code (Planet 

Team, 2018). 

 

In order to explore the potential of PlanetScope derived spectral 

variables in the prediction of pasture biomass, we calculated 24 

vegetation indices that only include visible and NIR spectral 

bands on their formulation (Table 1). 

 

2.4 Random forest regression algorithm 

Vegetation indices, spectral bands, field and paddock 

identification, and days after sowing (DAS) information were 

used to predict pasture biomass in this study. We used the RF 

machine learning algorithm (Breiman, 2001) to model and map 

pasture biomass. The 288 field-sampled points were randomly 

divided into 70% (202 points) and 30% (86 points) for training 

and validation of the RF models, respectively.  

 

We first performed a feature selection using the FSelector R 

package (Cheng et al., 2012) to select a subset of predictor 

variables that were most informative for predicting pasture 

biomass. Next, we fitted a RF model. Then, to determine the 

optimal parameters, number of trees (ntree) in the forest and the 

number of variables randomly sampled at each note (mtry), we 

tuned the parameters using 10-fold cross validation.  

 

Finally, we evaluated the variable importance (VI) in the best 

performing RF model by calculating the percentage of increase 

in the mean square error (incMSE), which reflects the importance 

of each predictor in the prediction accuracy of pasture biomass. 

All RF analyses were performed using the R software package 

mlr (R Core Team, 2018). 

 

2.5 Accuracy assessment 

The accuracies of predicted pasture biomass were evaluated 

using the Root Mean Square Error (RMSE) calculated based on 

field-based pasture biomass measurements in the validation 

dataset, as described in Equations (1) and (2). 

 

RMSE = √∑
(Xi - X̂i)

n

2
n
i=1                                   (1)                                                 

RMSE (%) = 
RMSE

X̅
×100                                 (2)                                                  

 

where  n = the number of observations in the dataset 

X̂i , Xi = estimated and observed pasture biomass value 

in the validation dataset, respectively 

X̅ = the mean value of pasture biomass in the validation 

dataset 
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Index Name Formula Reference 

ARVI 
Atmospherically Resistant 

Vegetation Index 
(NIR - 2R + B)/(NIR + 2R -B) 

(Kaufman and Tanre, 

1992) 

BGND Blue Green Normalized Difference (G - B)/(G + B) - 

DVI Difference Vegetation Index NIR - R (Tucker, 1979) 

EVI Enhanced Vegetation Index 2.5((NIR - R)/(NIR + 6R - 7.5B + 1) (Huete et al., 2002) 

EVI2 Enhanced Vegetation Index 2 (2.5(NIR - R))/(1+ NIR + 2.4R) (Jiang et al., 2008) 

ExB Excess Blue Vegetation Index 1.4B - G (Mao et al., 2013) 

ExG Excess Green Vegetation Index 2G - R - B (Woebbecke et al., 1995) 

ExGR 
Excess Green minus Excess Red 

Vegetation Index 
ExG - ExR Neto et al. (2004) 

ExR Excess Red Vegetation Index 1.4R - G (Meyer and Neto, 2008) 

GLA Green Leaf Algorithm (2G - R - B)/(2G + R + B) (Louhaichi et al., 2001) 

GNDVI 
Green Normalized Difference 

Vegetation Index 
(NIR - G)/(NIR + G) (Huete et al., 2002) 

GRVI Green Ratio Vegetation Index G/R (Kanemasu, 1974) 

IPVI 
Infrared Percentage Vegetation 

Index 
NIR/(NIR + R) (Crippen, 1990) 

MGRDI 
Modified Green Red Vegetation 

Index 
(G2 - R2)/(G2 + R2) (Tucker, 1979) 

MSAVI 
Modified Soil-Adjusted Vegetation 

Index 
[(2NIR+1 )- √(2NIR+1)2-8(NIR-R) ] /2 (Qi et al., 1994) 

NDVI 
Normalized Difference Vegetation 

Index 
(NIR - R)/(NIR + R) Rouse et al. (1973) 

NGRDI 
Normalized Green-Red Difference 

Index 
(G - R)/(G + R) (Tucker, 1979) 

NIR/GREEN NIR Green Simple Ratio G/R - 

OSAVI 
Optimized Soil-Adjusted Vegetation 

Index 
(NIR - R)/(NIR + R + 0.16)  (Rondeaux et al., 1996) 

RGBVI Red Green Blue Vegetation Index (G2 - B*R)/(G2 + B*RB) (Bendig et al., 2015) 

RVI Ratio Vegetation Index R/NIR 
Richardson and Wiegand 

(1977) 

SAVI Soil-Adjusted Vegetation Index [(NIR - R)/(NIR + R + 0.5)].(1 + 0.5) (Huete, 1988) 

SR Simple Ratio  NIR/R (Jordan, 1969) 

VARI 
Visible Atmospherically 

Resistant Index 
(G - R)/(G + R -B) (Gitelson et al., 2002) 

Table 1. Summary of the vegetation indices (VIs) used in this study for pasture biomass estimation. 

 

Next, we mapped the predicted pasture biomass for the entire 

study area for four months of the pasture-growing season (May, 

June, July, and August) 

 

3. RESULTS 

Pasture biomass varied from 24.04 to 656.08 g.m-2, with an 

overall mean value of 156.82 g.m-2 for all sampling dates, 

resulting in a high variability of the pasture biomass in the study 

area (coefficient of variation equal to 54.96%). The sampling 

dates of May (Date 1 and Date 2) exhibited the highest mean 

pasture biomass (mean value of 189.48 g.m-2), whereas Date 4 

showed the lowest mean biomass (102.74 g.m-2). 

 

The best RF model to predict pasture biomass based on spectral 

variables extracted from PlanetScope imagery as well as paddock 

identification and DAS data resulted in an accuracy of 

approximately 56% (coefficient of determination (R²) = 55.65 %) 

and a relatively low RMSE (52.04 g.m-2 or 32.75%), based on the 

validation dataset. Figure 2 shows a comparison of measured 

versus predicted pasture biomass, where values closer to the axis 

of 45° indicate higher accuracy.  

 

 

 
Figure 2. Scatterplots of the predicted versus measured values 

of pasture biomass (g.m-2) in the validation dataset. 
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Using RF Variable Importance, NIR/Green, GLA, IPVI 

vegetation indices, DAS, and NIR band are among the most 

important variables to predict pasture biomass in our study 

(Figure 3). 

 

Figure 3. Relative importance of the variables as measured by the 

Variable Importance metric in the Random Forest algorithm. 

 

The predicted pasture biomass maps for our study area for four 

dates – 20th May, 15th June, 11th July, and 10th August 2019, are 

shown in Figure 4. These maps show spatio-temporal changes in 

pasture biomass for all paddocks, which were in parity with 

expected changes in pasture vegetation, as driven by forage 

development and management operations.  

Grazing commenced on the paddocks of Field R5 and R6 in 17th 

May 2019, and on the paddocks of Field R7 and R8 in 27 May 

and 31th May 2019, respectively. Paddock grazing approximately 

followed a rotational pattern from May to the middle of June, 

when all animals were removed from the paddocks. The 

paddocks remained animal-free until the first dekad of August. 

The paddock management operations resulted in pronounced 

differences in pasture biomass production during the growing 

season, which could be clearly seen in the pasture biomass maps 

produced for the four different dates between May and August 

(Figure 4). 

 

4. DISCUSSIONS 

Since the proposal of Planet’s constellation of CubeSats, these 

nano-satellites have offered an unprecedented opportunity to 

monitor vegetation dynamics with enhanced spatial detail more 

frequently than ever before (Helman et al., 2018; Miller et al., 

2019). In this preliminary study, our results demonstrated the 

capacity of spectral variables derived from PlanetScope imagery 

to monitor pasture biomass at high spatial (~3 m) and temporal 

(~daily) resolution.  

 

The seasonal dynamics of forage production in our study area are 

influenced by changes in the proportion of millet and brachiaria, 

environmental conditions, and grazing management, which 

resulted in greater variation in the spatio-temporal pattern of 

pasture biomass in the fields during the growing season. The 

highest values of pasture biomass (> 500 g.m-2) observed in the 

predicted maps in the month of May can be explained by the good 

initial growth of millet in the begging of the pasture-growing 

season. Later in the growing season, in the months of June and 

July, all paddocks had lower values of pasture biomass due to 

grazing and plant water stress, a meteorological drought 

characteristic in this region during the winter months (total 

precipitation in June-July equals to 56.7 mm). 

 

 
Figure 4. Pasture biomass spatial maps predicted by the best RF model for the study area in four dates: (a) 20th May 2019, (b) 15th 

June 2019, (c) 11th July 2019, and (d) 10th August 2019. 
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Several studies have used vegetation indices, especially NDVI 

and EVI, derived from MODIS (250 m) and Landsat (30 m) 

images, and more recently from Sentinel-2 (10 m) to captured the 

seasonality of grazing pastures (Gu and Wylie, 2015; Vrieling et 

al., 2016; Wang et al., 2019). In this study, we found that the VIs 

and the spectral bands from PlanetScope imagery were 

consistently able to detect the seasonality of pasture biomass at a 

finer spatial resolution. On the other hand, our best RF model 

resulted in overestimation at low pasture biomass levels and 

underestimation of pasture biomass greater than ~300 g.m-2 

(Figure 2).  

 

The moderate performance of our model (R² = 55.65 %) could be 

explained by the high inter-paddock and intra-paddock variation 

in pasture production due to other factors not particularly 

considered in this study, such as heterogeneous soil 

characteristics and terrain variation, as well as, the radiometric 

data quality of PlanetScope imagery (Houborg and McCabe, 

2016). While the new generation of orbital platforms offers an 

unprecedented combination of high temporal and spatial 

resolution imagery, these satellites have the disadvantage of not 

being equivalent to a rigorously calibrated and high performing 

satellite such as Landsat 8 (Houborg and McCabe, 2018). In 

addition, these satellites can also present cross-sensor variations 

that may affect the relationship between field-based pasture 

biomass and spectral variables derived from PlanetScope 

imagery. 

 

In this preliminary study, our intention was to explore the 

potential of spectral variables derived from PlanetScope imagery 

to assess and monitor pasture biomass, as well as to identify 

possible limitations of using these images for pasture monitoring. 

Despite possible limitations, we believe that our results are 

encouraging and should motivate further investigations for using 

PlanetScope imagery to assess and monitor pasture biomass. 

 

5. CONCLUSIONS 

This study evaluated the potential of spectral variables 

(vegetation indices and spectral bands) derived from PlanetScope 

imagery to predict pasture biomass when associated with field 

management information using the Random Forest (RF) machine 

learning algorithm.  

 

Since pasture biomass production and availability vary 

seasonally and are influenced especially by environmental 

conditions and grazing management, our results showed that by 

combining PlanetScope imagery and field management 

information, we were able to predict the spatio-temporal changes 

in pasture biomass with a relatively low RMSE (32.75%).  

 

Accurately estimating pasture biomass using spectral variables 

derived from PlanetScope imagery are promising, providing new 

insights into the opportunities and limitations related to the use 

of PlanetScope imagery for pasture monitoring. 
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