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ABSTRACT: 

 

This work is undertaken considering the significance of functional phenotyping (primarily measured from continuous profiles of plant-

water relations) for crop selection purposes. High-Throughput Plant Phenotyping (HTPP) platforms which largely employ state-of-

the-art sensor technologies for acquisition of vast amount of field data, often fail to efficiently translate sensor information into 

knowledge due to the major challenges of data handling and processing. Hence, it is imperative to concurrently find a way for 

dissociating noise from useful data. Additionally, another important aspect is understanding how frequent should be the data collection, 

so that information is maximized. This paper presents a novel approach for identifying the optimal frequency for phenotyping 

evapotranspiration (ET) by assimilating results from both time series forecast as well as classification models. Thus, at the optimal 

frequency, plant-water relations can not only be desirably predicted but genotypes can also be classified based on the characteristics 

of their ET profiles. Consequently, this will aid better crop selection, besides minimizing noise, redundancy, cost and effort in HTPP 

data collection. High frequency (15 min) ET time series data of 48 chickpea varieties (with considerable genotypic diversity) collected 

at the LeasyScan HTPP platform, ICRISAT is used for this study. Time series forecast and classification is performed by varying 

frequency up to 180 min. Multiple performance measures of time series forecast and classification are combined, followed by 

implementation of entropy theory for sampling frequency optimization. The results demonstrate that ET time series with a frequency 

of 60 min per day potentially yield the optimum information.   

 

 

1. INTRODUCTION 

A run-through of the High-Throughput Plant Phenotyping 

(HTPP) methods implemented particularly in the last decade 

reveals the extensive use of Remote Sensing (RS) in 

characterizing plant processes. Availability of a plethora of 

imaging systems has facilitated anatomization of observable 

plant features (largely morphological), while weather sensors 

have effectuated detailed crop mapping and modeling under 

varying environmental conditions. The imaging systems can vary 

from very close-range fixed digital cameras to space-borne 

sensors, thereby covering leaf-level to farm-level details. 

Similarly, weather data can be collected from plant-level (i.e. 

microclimatic) to regional scales. The opportunity to generate 

insightful inferences from these data further broadens with 

increased frequency of data collection. However, despite the 

technological developments thereof, an aspect of HTPP which 

still remains relatively less explored is that of plant physiology 

i.e. functional phenotyping (Halperin et al, 2017; Gosa et al, 

2019) which relates to canopy-conductance traits. Furbank, 

Tester, 2011 have even quoted phenomics as ‘high-throughput 

plant physiology’. 

 

There are essentially two primary limitations which impede the 

efficient utilization of HTPP for evaluating the differences in 

plant water use capacities: 1. the difficulty to measure plant water 

use frequently, and 2. identifying the optimal frequency for 

simultaneous measurement of canopy-conductance traits. Vadez 

et al, 2015 have addressed the first limitation by enabling 

simultaneous measurement of evapotranspiration (ET) under 

non-controlled environmental conditions, while the second is 

addressed in this paper. Time series observations of ET are used 

to explore genotypic differences in the canopy-conductance 

traits, among 48 chickpea genotypes. The implications of ET in 

understanding canopy-conductance is elaborated in Isard, 

Belding, 1989 which asserts that “plant-water relations are 

majorly studied from temporal characterization of ET, since ET 

is the only one of the three principal transport phenomena 

between the earth's surface and lower atmosphere (water vapour, 

heat, and momentum flows) that can be measured directly”. 

Halperin et al, 2017 have also reinforced the need for 

‘simultaneous and continuous monitoring of water relations in 

the soil–plant–atmosphere continuum’ (i.e. the ET profile of each 

plant over time).  

 

It has been studied that pot experiments equipped with 

gravimetric non-contact sensors (i.e. load cells) can be potentially 

used for estimating field ET (Lu et al, 2018). Former functional 

HTPP studies have utilized high frequency load cells data for 

ranking plants with respect to their drought tolerance and other 

physiological characteristics (Granier et al, 2006, Halperin et al, 

2017). Furthermore, although these sensors enable evaluation of 

the impact of soil hydraulic characteristics on irrigation 

management strategies (Tolk et al, 2005) and HTPP of canopy-

conductance traits (Lazarovitch et al, 2006; Denich et al, 2010), 

there has rarely been any mention about optimizing the data 

collection frequency at such platforms. Identification of an 

optimum sampling frequency would not only prevent noise and 

redundancy in raw data, but can also promulgate systematic crop-

specific irrigation scheduling. Hence, this work is focused on 
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optimizing the sampling frequency of load cells observations for 

efficient categorization of chickpea genotypes in terms of ET. 

 

High frequency ET time series exploited for this work was 

obtained from the LeasyScan HTPP platform at ICRISAT, 

Hyderabad, India which uses load cells to measure pot weight at 

a frequency of 15 minutes. Due to several extraneous influences, 

data generated in such platforms in non-controlled conditions 

tend to be noisy. Hence, these data sets require adequate de-

noising (or pre-processing) and relevant feature extraction, in 

order to facilitate precise distinction in the characteristics of the 

desired trait.  

 

In this work, a thorough set of steps was adopted for the 

conversion of raw load cells time series into interpretable ET 

profiles, followed by multi-scale Autoregressive Integrated 

Moving Average (ARIMA) modeling. The ARIMA based 

models were built for forecasting each ET time series at 

frequencies (interchangeably used with scales), ranging from 15 

min to 180 min. The genotypes were clustered at the base 

frequency i.e. 15 min and classification accuracy was estimated 

for each successive frequency. Subsequently, a combined set of 

metrics obtained from forecasting as well as classification, was 

used for entropy-based optimization of sampling frequency. The 

details of each step is presented in Section 2 and the 

corresponding results and description are elaborated in section 3.    

 

2. MATERIALS AND METHODOLOGY 

2.1 Materials 

For this study, 4 replications of 48 chickpea genotypes were 

phenotyped at the LeasyScan HTPP platform, ICRISAT-

Patancheru (17.5111° N, 78.2752° E). The platform is equipped 

with Phenospex® 3D laser scanners which traverse on top of the 

plants, and provide 3-D images (used for canopy-growth trait 

analysis, not covered in this paper) every 2 hours. The total 

capacity of LeasyScan is ~ 5000 plants, grown in sectors (unit of 

analysis) across the trenches of platform. For simultaneous 

phenotyping of canopy-conductance traits, each sector is 

associated with gravimetric sensors (load cells) that measure 

weight of respective sectors every 15 minutes. The whole system 

operates in non-controlled or open-environment conditions and 

provides HTPP data close to real field conditions (see Vadez et 

al, 2015 for details). The time series data set examined in this 

work comprised load-cell weights collected at every 15 minutes’ 

interval, from 20th February to 6th March 2017 i.e. 15 days.  The 

following analysis was conducted by considering the mean (of 4 

replications) time series of each variety. 

  

2.2 Methodology 

2.2.1 Pre-processing:  

 

The complete pre-processing was done in two stages. The first 

stage of pre-processing included de-noising load-cell values to 

obtain ET time-series. In this step, pot weight values lying 

beyond the range of 60,000-100,000 grams were first discarded, 

as per the limits of the experimental set-up (Vadez et al, 2015). It 

was observed that there were both phenomenon-based as well as 

latent anomalies, which were removed independently. The 

phenomenon-based anomalies were primarily caused due to 

intermittent irrigation events which resulted in sudden rise and 

drop in pot weight, after the discharge of excess water. This 

resulted in sudden spikes in each of the time series. Contrarily, 

abrupt changes in ambient environmental conditions, besides 

system-generated noise comprised the latent anomalies. While 

the former anomalies needed complete removal from data, the 

latter required meticulous selection of the observations to be 

retained (i.e. due to ambient effects) and the ones that should be 

removed (i.e. system-generated and external noise). Discrete 

wavelet transform (DWT) was implemented on each time series 

up to the first three levels, and outliers in the coefficients of each 

level were identified using boxplot procedure. The locations of 

those outliers in the DWT coefficients were retrieved, and the 

corresponding observations were removed from the dataset. 

Thus, anomalous peaks from the raw data were eliminated. The 

consequent missing values were linearly interpolated, and their 

difference at lag 1 was calculated to get the ET time series at 15 

minutes’ frequency, for each plant.  

 

The next stage in pre-processing included computation of 

reference ET i.e. Penman Monteith ET in mm/mm2/15 minutes 

[6] using the weather variables, collected from the Campbell 

sensors, installed at the LeasyScan platform. Reference ET 

values were used as a benchmark to analyse possible 

abnormalities in the observed ET values of all the genotypes. The 

ratios of observed |ET| to reference ET were calculated for day-

time (solar radiation greater than 0) and night-time (solar 

radiation equal 0). Every observation which resulted in a ratio 

beyond 1.0 and 1.5, for day- and night-time respectively, was 

considered abnormal and consequently filtered out before 

smoothing each ET time series using the cubic spline method. 

 

2.2.2 Multi-scale ARIMA Modeling: 

 

Auto Regressive Integrated Moving Average (ARIMA) models 

are used to explain a given time series in terms of its own past 

values, i.e. its own lags, and the lagged forecast errors are used 

to forecast future values (Ho, Xie, 1998). Here, ARIMA 

modeling was performed to assess forecast ability at different 

scales using different forecast metrics. However, ARIMA models 

require the series to be stationary. Hence, the Augmented 

Dickey-Fuller test was executed prior to ARIMA modeling for 

inspecting the stationarity of each time series (Cheung, Lai, 

1995). A linear trend in the time series was identified due to the 

growth of plants during the later days and increased water loss 

(through higher transpiration). The presence of trend resulted in 

a p-value greater than 0.05 for each time series. Hence, the first 

differenced time series was used for modeling. Through this test, 

it was also identified that majority of the time series were auto-

correlated only till lag 12 i.e. 180 minutes. Therefore, multi-

scaling was done by reducing the frequency of each time series 

by 15 minutes i.e. the interval of data points was increased from 

15 minutes (originally) to 30, 45, 60, …, 180 minutes, through 

aggregation as suggested in Wu et al, 2013.  

 

The entire data set was converted into 12 consecutive scales, with 

an interval of 15 min between each.  Subsequently, in order to 

assess the forecast ability at each scale the ARIMA model was 

used, and a unique model was built for ET time series of each 

plant. The auto.arima function in R was implemented for 

selecting the best fit model for each time series, and prediction 

was performed on the last 5 days (the initial 10 days were used 

for training). The corresponding Akaike Information Criterion 

(AIC), Bayesian Information Criterion (BIC) and Root Mean 

Square Error (RMSE) for each model at each sampling frequency 

were then retrieved (Tsay, 1984). While AIC denotes the out-of-

sample prediction error, BIC measures the trade-off between 

model fit and complexity of the model, and RMSE represents the 

absolute fit of the model (i.e. how close is predicted value to the 

observed value). The mean AIC, BIC and RMSE across all the 

models (one per plant) were retained as the representative 

prediction measures per frequency. 

 

2.2.3 Multi-scale Classification: 
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In this study, there was insufficient prior information about the 

class a particular genotype belongs to, as well as the number of 

classes inherently present in the data. Therefore, an optimal 

number of clusters was first identified from the 15 min interval 

ET time series using Silhouette method (Rousseeuw, 1987). It 

was found that the data set could be optimally segregated into 

three groups. This was followed by feature-based time series 

clustering, since time series features are known to be more 

informative and offer better representation of the data than the 

raw time series (Laurinec, 2018). Features also help in 

significantly reducing the time series dimensionality, besides 

emphasising the fundamental characteristics that are most 

instrumental in delineating the differences among samples (here, 

the genotypes).  

 

Time series features can be extracted using different methods e.g. 

nondata adaptive, data adaptive, model based and data dictated 

(Laurinec, 2018). While the nondata adaptive methods transform 

every time series using the same parameters, irrespective of the 

characteristic differences between them, the parameters of data 

adaptive transformations vary according to each data series. In 

data dictated methods, a compression ratio (Aghabozorgi et al, 

2015) is defined per time series. However, model based methods 

assume that each observed time series is based on a basic model, 

and every two time series which could be explained by the same 

model parameters are similar. For this study, model based feature 

extraction was implemented; the parameters obtained from 

ARMA models were used as features for clustering the time 

series (Xiong, Yeung, 2002; Otranto, 2008). Unsupervised 

Random Forest (Shi, Horvath, 2005) method was employed for 

obtaining the cluster indices, subsequently used as class labels for 

estimating the supervised Random Forest based classification 

performance measures; accuracy (in percentage), F1-score 

(harmonic mean of precision and recall), sensitivity (the true-

positive rate) and normalized ZeroOneLoss (each correct 

classification has loss=0, and incorrect classification has loss=1), 

at each scale.   

 

Thus, the cluster-then-label approach to multi-class classification 

(de Sa, V.R., 1994; Nguyen, Smeulders, 2004; Nilashi et al, 

2017) was included as a part of the procedure for optimizing the 

sampling frequency. The four classification metrics, calculated 

on test data (30% of the total samples, selected randomly) were 

coalesced with the AIC, BIC and RMSE estimates obtained from 

the previous step. Thus, the data set used for entropy-based 

optimization (see next section) was a table with seven attributes 

per scale, representative of the respective forecast ability as well 

as classification performance. 

 

2.2.4 Entropy-based Frequency Optimization: 

 

Entropy (E) per frequency (Equation 1) was calculated from the 

vector of performance attributes (as detailed in the previous 

section), followed by computation of conditional entropy (CE) 

between the base frequency and every other successive frequency 

(Equation 2). E and CE were calculated as proposed in Kullback, 

1997 and Karamouz et al, 2009. While E enabled estimation of 

the average amount of information (pertaining to forecasting and 

classification performance) at each frequency, CE was 

incorporated as the measure of redundancy in the information 

(between each frequency and the base frequency). Thus, each 

frequency level was associated with its respective information 

measures, leveraged to define the cost (or objective) function for 

optimization. The objective of the study was to minimize 

redundancy between two frequency levels, and ensure low 

entropy (i.e. less randomness) at individual scale. Hence, the 

objective function was defined as shown in Equation 3. 

 

𝐻(𝑦) = − ∑ 𝑝(𝑦𝑖) log 𝑝(𝑦𝑖)                                                       (1)

𝑁

𝑖=1

 

 

𝑇(𝑥, 𝑦) = 𝐻(𝑥) + 𝐻(𝑦) − 𝐻(𝑥, 𝑦)                                              (2) 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =
𝐶𝐸𝑠 − 𝐸𝑠

𝐶𝐸𝑠
                                                                (3) 

 

where 𝑁 represents the number of attributes  𝑦𝑖 with probabilities 

𝑝(𝑦𝑖) and i =1, …, 𝑁. 𝐻(𝑥, 𝑦) is the joint Entropy between the 

base scale, 𝑥 and every other scale, 𝑦. 𝐶𝐸𝑠 and 𝐸𝑠 are the CE and 

E at a given scale, s respectively (s =1, …, 𝑛𝑠; 𝑛𝑠 = total number 

of sampling frequencies or scales). 

  

The constraints for optimization are given as: 

 

𝐶𝐸 − 𝐸 ≤ 0 

𝐸𝑚𝑖𝑛 ≤ 𝐸 ≤ 𝐸𝑚𝑎𝑥 

𝐶𝐸𝑚𝑖𝑛 ≤ 𝐶𝐸 ≤ 𝐶𝐸𝑚𝑎𝑥  

 

It may be noted that, here, the objective was not to identify the 

optimum y and x values, rather the frequency at which the cost 

was minimum. This procedure was therefore, similar to the 

implementation of internal cluster validation optimization 

methods (Bezdek, Pal, 1995; Gajawada et al, 2012) used in 

machine learning. The reportedly robust Nelder-Mead 

optimization procedure (Singer, Nelder, 2009) was implemented 

using the optim function in R (R, core team, 2013).  

 

3. RESULTS AND DISCUSSION 

3.1 Pre-processing 

The raw time series data from each load cell contained both 

missing as well as erroneous observations (Fig. 1a). The 

extremely anomalous values were removed and the remaining 

observations (Fig. 1b) were used to generate the ET time series. 

Fig. 1b also shows the efficacy of using DWT in identifying the 

spikes in the data set. In this step, the objective was to devise a 

basic set of methods to systematically transform raw data into 

temporal profiles (i.e. pre-processing) of plant responses. Hence, 

after complete pre-processing of the raw data, ET time series of 

few genotypes were compared for visual inspection (Fig. 2).  

 

The chickpea genotypes used for this analysis either belonged to 

wild, cultivated or check varieties. There were also some 

genotypes which were expected to have high transpiration 

efficiency (TE), while another set of genotypes had low TE. Fig. 

2 compares the ET profiles of three different varieties from the 

high (G22, blue), low TE (G32, red) and the wild types (G1, 

purple), with reference ET (green) as a theoretical baseline. 

Reference ET represented the maximum possible water loss 

under the given environmental conditions, and the genotypic ET 

profiles were quite lower since the plants were at the very initial 

growing stages with smaller canopy sizes (hence, lesser stomatal 

water loss). The overlaid plot of reference ET also shows the 

consistency of pre-processing results, under the same ambient 

conditions. The practically more important result was however, 

the visually discernible differences among the ET observations. 

In the following steps, the differences in ET are segregated 

through clustering, and classification performance is assessed at 

different sampling frequencies. 
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Figure 1. An example of raw load cell time series (a) and stage-1 

pre-processed time series (b; data points retained after outlier 

removal is shown in red) 

Figure 2. Comparison of smooth ET time series (stage-2 pre-

processing) of three different genotypes and reference ET 

(ET_PM) 

3.2 Multi-scale ARIMA Modeling 

The ET trend and seasonality plots of one of the genotypes is 

shown in Fig. 3. It was observed that there was an increasing 

trend due to increased water loss with the eventual growth of 

plants, while seasonality denoted the daily cyclic patterns. Fig. 4 

represents the forecast for the last five days of the series at 15 

min interval and a confidence interval of 95%. The predicted 

values were found to lie quite close to the original values, thereby 

ensuring acceptable performance of the selected models. 

Furthermore, normalized values of the forecast metrics (Table 1), 

AIC, BIC and RMSE revealed the best predictability at 15 min 

scale. However, prediction RMSE was found to be lowest at 60 

min scale. While a remarkable increase in RMSE was noticed 

only after the 105 min scale, AIC and BIC were found to have 

considerably large estimates only after 60 min scale. Thus, the 

results (as per time series forecast performance) implied that, the 

optimal sampling frequency could lie between 15 min to 105 min. 

The relevance of considering these three metrics for time series 

model selection have been affirmed in several other studies as 

well (Atkinson et al, 2012; Boroojeni et al, 2017). This study 

however, includes these performance measures to compare 

model prediction at different scales.  

Figure 3. ET time series decomposition plot of a single genotype 

(as an example) representing the observed, trend, seasonal and 

random series (in the order of top to bottom). 

Figure 4. ET time series forecast plot of a single genotype as per 

the best fit ARIMA model 

Figure 5. Levelplot of the time series forecast metrics (AIC, BIC, 

RMSE) across the entire range of frequencies 

3.3 Multi-scale Classification 

One important objective of this work was also to enable 

delineation of differences among the varieties with respect to the 

differences in their ET profiles. However, discrete segregation of 

the ET time series feature space required prior label information. 

Hence, cluster indices at 15 min scale were used for 

classification. The separation between clusters is shown on the 

first and second dimensions of the Multidimensional Scaling 

(MDS) plot (Fig. 6a). Additionally, the differences between the 

average ET profiles of each cluster is plotted in Figure 6b, which 

clearly identifies that water loss due to ET is the least in Cluster 

1 and highest in Cluster 3.  

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W12-2020, 2020 
2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS 2020), 22–26 March 2020, Santiago, Chile

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-425-2020 | © Authors 2020. CC BY 4.0 License. 

Primary publication at IEEE Xplore: https://doi.org/10.1109/LAGIRS48042.2020.9165630 428



In Table 2 the normalized values of classification performance 

measures are given which indicate that maximum classification 

accuracy was achieved at 15, 60 and 105 min scales while the F1-

score is highest at 60 and 165 min. The true-positive rate was 

found to be consistently high only until 60 min scale beyond 

which it started fluctuating. Finally, ZeroOneLoss was also found 

to be the least at 60 min and 105 min scales. Thus, the intuitive 

inference about the optimal sampling frequency obtained from an 

overall examination of the classification measures coincided with 

that of the time series forecast measures. These results also state 

the need to examine several classification performance metrics, 

since conclusions differ with different metrics i.e. performance 

cannot be completely ascertained with a single metric, 

particularly in case of imbalanced datasets (Ferri et al, 2009). The 

classification measures leveraged in this work are local measures 

i.e. these are estimated considering the frequency of each class

known to have low sensitivity to class noise (Ferri et al, 2009).

Figure 6. MDS plot genotypic clusters (a) and average ET time 

series of each cluster (b) 

Figure 7. Levelplot of the time series classification metrics 

(Accuracy, F1_score, Sensitivity, ZeroOneLoss) across the entire 

range of frequencies 

3.4 Entropy-based Frequency Optimization 

The proposed optimization procedure aims to identify a suitable 

frequency for HTPP data collection at which both time series 

predictability as well genotype classification performance is 

high. Hence, the combined set of metrics from both the methods 

were used to compute Entropy (E) and Conditional Entropy (CE) 

per frequency level (or scale). Subsequently, Function Value 

(FV) at each scale was calculated as per Equation 3. The variation 

in E, CE and FV is represented in Fig. 8, for the entire range of 

frequency examined in this work. The optimal frequency (at 

which FV is closest to the optimal value, obtained from the 

Nelder-Mead algorithm) was found to be 60 min, at which both 

E and CE were quite low. Furthermore, an overall inspection of 

E and CE implied that beyond the 150 min scale, randomness was 

higher and redundancy was lower. Thus, it was inferred that 

observed data would tend to be more random (insufficient) and 

the cyclic ET patterns will be less predictable if data collection 

frequency is less than 150 min.  

Figure 8. Levelplot of Entropy (E), Conditional Entropy (CE) and 

Function Value (FV) across the entire range of frequencies 

4. CONCLUSIONS

This study demonstrated an extensive method for optimizing 

frequency of data collection at HTPP platforms, particularly 

operated in non-controlled conditions. Dynamic changes in the 

ambient environment often result in noisy and redundant data, 

thereby impeding efficiency of information extraction.  Hence, 

an intuitive set of steps was thoroughly devised for denoising and 

converting sensor data to ET time series. ARIMA modeling was 

performed by changing the daily frequency of the entire time 

series data set from 15 min to 180 min. It was found that there 

was no single frequency at which all the forecast measures (AIC, 

BIC and RMSE) yielded the best value. Rather, it was noticed 

(based on only ARIMA modeling) that the optimal frequency lied 

in the range of 15 min to 105 min. Similar inferences were 

deduced based on classification performance measures as well. 

The metrics from both the methods were used for estimating E 

and CE at each frequency, and optimal sampling frequency was 

identified such that redundancy and randomness was the 

minimum at that frequency. It was finally concluded that a 

sampling interval of 1 hour or 60 min might be sufficient for 

desired information extraction from ET time series with reduced 

noise in the observed data.  
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