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ABSTRACT: 

 

Land surface temperature (LST) governs many biophysical processes at the land-atmosphere interface and the relationship 

vegetation-LST has been the premise of many studies. This paper purposed to correlate LST with normalized difference vegetation 

index (NDVI) and surface albedo in the grasslands of Pampa biome during winter and summer seasons. Four Landsat 8 scenes with 

clear-sky conditions were acquired from the US Geological Survey website and NDVI and surface albedo were calculated. 

Afterwards, LST was obtained using Split-window (SW) algorithm. Results showed that LST in winter season exhibited less 

variations between pixels in comparison to summer, where the heterogeneity of the environment is significantly more detectable. 

LST retrieved from Landsat 8 data was consistent with the actual temperature measured in the field, with differences varying 

between 1-1.6 K. The LST-Vegetation relationship in the Pampa grasslands varies with the season so that caution must be taken in 

assuming a regular behaviour between LST and remote sensing vegetation variables, such as empirical relationships that are widely 

used in many scientific fields.  

 

 

1. INTRODUCTION 

Land surface temperature (LST) governs many biophysical 

processes at the land-atmosphere interface; therefore, it is a key 

parameter in environmental modelling from local to global 

scales (Hutengs, Vohland, 2016). Thermal infrared (TIR) 

remote sensing can be used to determine changes in the LST 

pattern, since corrections for the effects introduced by the 

atmosphere are performed (Coll et al. 2005). 

 

The relationship vegetation-LST has been the premise of many 

studies, such as detecting land cover changes, evaluating 

vegetation dynamics, inferring evapotranspiration, among 

others (Goward, Hope, 1989; Julien, Sobrino, 2009; Mukherjee 

et al. 2014). Nevertheless, an irregular behavior between these 

two variables has been reported (Kaufmann et al. 2003; Liu et 

al. 2006). 

 

Vegetation has been monitored traditionally by remote sensing 

through vegetation indices (IVs) (Käfer et al. 2018). Between 

the available IVs, the most widely applied is the normalized 

difference vegetation index (NDVI) (Rouse, 1973), which is a 

numerical indicator adopted to analyze remote sensing 

measurements and assess whether the target being observed 

contains live green vegetation or not (Kumar, Shekhar, 2015). 

 

In contrast, surface albedo is a required variable for determining 

the magnitude of energy fluxes in the soil–plant–atmosphere 

continuum (Mattar et al. 2014), which is also used in many 

applications. For instance, albedo estimation accuracy affects 

the performance of evapotranspiration models (Sobrino et al. 

2007; Vinukollu et al. 2011). Variations in surface albedo 

influence the spatial LST distribution by modifying the amount 

of solar radiation that is available to heat the land surface. 

 

Pampa biome, in southern Brazil, is composed mostly by 

grassland vegetation interspersed with gallery forests. It is a 

complex biome with different vegetation types, among which 

the most representatives are fields dominated by grasses (Rubert 

et al. 2018). Although there are a considerable number of 

studies on the seasonal variations of Pampa biome vegetation 

along with climate variables, vegetation-LST relationship is not 

properly addressed on the literature. Most researches focused on 

air temperature data in conjunction with IVs or applied LST 

standard products (Fontana et al. 2018; Moreira et al. 2019), 

which present known limitations (Mukherjee et al. 2014; Simó 

et al. 2016). 

 

The aim of this paper is to correlate LST with normalized 

difference vegetation index (NDVI) and surface albedo in the 

grasslands of Pampa biome. We intended to build a relationship 

between LST-NDVI and LST-albedo across two different 

seasons in order to contribute to the understanding of this 

peculiar system by capturing its complexity. 

 

 

2. METHODOLOGY 

2.1 Study area 

Pampa biome is composed by natural grasslands that cover 

southern Brazil, Uruguay and central region of Argentina. Its 

typical ecosystem on the south of Brazil is a natural mosaic of 

Seasonal Forests from Atlantic Domain and grassland (Maragno 

et al. 2013). The Brazilian Pampa represents 63% of the Rio 

Grande do Sul state area, but 50% of the natural vegetation of 

Pampa biome was converted in pastures, crops and forestry 

currently (Oliveira-Filho et al. 2006). 

 

Although the flora of the Pampa biome has more than 3000 

species, it is dominated by about 450 species of forage grasses 

and more than 150 species of legumes. The development of this 

flora is due to the different effects associated with latitude, 

altitude, and soil fertility. Therefore, the biome presents unique 

characteristics in terms of vegetation/grass cover (Rubert et al. 

2018). 
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The area evaluated is located close to the Federal University of 

Santa Maria (coordinates: 29.725ºS; 53.760ºW), at the 

municipality of Santa Maria, Rio Grande do Sul State, Brazil 

(Figure 1). It is possible to see in the upper right and left corner 

a few spaces of human occupation. 

 

The climate is subtropical humid, with annual precipitation of 

1,708 mm and no dry season. Besides, it is characterized by 

seasonal variation of temperature, varying from zero or few 

negatives in the winter to 40°C in the summer, with the average 

annual temperature of 19.2°C (Maragno et al. 2013). 

 

 

Figure 1. Location of the study site. 

 

2.2 Data acquisition 

Landsat 8 was launched on 11 February 2013 as a continuation 

of the Landsat Mission. The satellite carries two push-broom 

instruments, the Operational Land Imager (OLI) and the 

Thermal Infrared Sensor (TIRS). OLI has eight bands located 

from the visible to the short-wave infrared region, whereas 

TIRS has two channels in the TIR region of the electromagnetic 

spectrum (Duan et al. 2018). 

 

We acquired four Landsat 8 scenes with clear-sky conditions 

from the US Geological Survey website <http:// 

www.earthexplorer.usgs.gov/>. TIRS bands were downloaded 

in Level-1 product in order to provide later thermal radiance and 

brightness temperature. Landsat Level-1 data are radiometric, 

geometric and terrain corrected and are available at a 100-meter 

spatial resolution. 

 

To obtain the NDVI and surface albedo, Landsat 8 Level-2 

surface reflectance products were also downloaded from the 

Landsat data collection. These products are generated at the 

Earth Resources Observation and Science (EROS) Center at a 

30-meter spatial resolution. Specific information about the 

scenes used in this study is shown in Table 1.  

 

Acquisition Date Season Path Row Sun 

Elevation 

29 August 2019 Winter 223 80 43.50º 

18 February 2019 Summer 223 78 56.82º 

26 August 2018 Winter 223 78 42.51º 

15 February 2018 Summer 223 78 54.96º 

Table 1. Information of the Landsat 8 OLI/TIRS imagery. 

 

The EROS Science Processing Architecture (ESPA) on-demand 

interface corrects satellite images for atmospheric effects to 

create Level-2 data products. The data are generated from the 

Land Surface Reflectance Code (LaSRC) that uses a unique 

radiative transfer model (Vermote et al., 2016). 

 

2.3 Determination of NDVI and surface albedo 

The NDVI considers that ‘green’ leaves absorb radiation at red 

wavelengths (640–670nm) due to the presence of chlorophyll 

pigments whilst scattering radiance at very near infrared 

wavelengths (700–1100 nm) due to the leaves internal structure. 

On the other hand, a bare soil surface has higher reflectance at 

red wavelengths and lower reflectance at near-infrared 

wavelengths. The index scales between -1 and 1 and tends to 

have a more linear relationship with vegetation properties 

(Kumar, Shekhar, 2015). 

 

Surface albedo is theoretically defined as the ratio between the 

up-welling and down-welling incident irradiance upon a surface 

(Mattar et al. 2014). Grasslands have higher albedo than dense 

vegetation. An increase in surface albedo leads to a reduction in 

net radiation, energy fluxes (sensible and latent), convective 

clouds and precipitation, leading to a drier atmosphere. In 

contrast, the slight decrease in the LST due to albedo increase is 

outweighed by a surface warming associated with a decrease in 

surface roughness, latent heat flux, rooting systems and 

evapotranspiration rate (Godinho et al. 2016). NDVI and 

surface albedo can be computed from the atmosphere 

reflectance in the OLI bands according to the equations 

exhibited in Table 2.  

 

Description Equation Reference 

Normalized 

difference      

vegetation index 

NDVI = (𝜌5 – 𝜌4) / (𝜌5 

+ 𝜌4) 

Rouse et 

al. (1973) 

Surface 

albedo 
𝛼 = 0.365𝜌2 + 0.130𝜌4 + 0.373𝜌5 

+ 0.085𝜌6 + 0.072𝜌7 – 0.0018 

Liang et 

al. (2001) 

Table 2. Summary of vegetation indexes applied in this study. 

  

where  ρ is the reflectance at each Landsat 8 OLI channel. 

L depends on the type of soil. The common value 

applied is L=0.5. 

 

2.4 Computation of LST and data processing 

For an atmosphere with clear conditions under local 

thermodynamic equilibrium, the thermal radiance observed at 

the top of the atmosphere (TOA) is expressed as the Radiative 

Transfer Equation (RTE) (Zheng et al. 2019) according to: 

 

𝐿𝑠𝑒𝑛 ,𝜆 =  𝜀𝜆𝐵𝜆 𝑇𝑠 +  1 − 𝜀𝜆 𝐿𝑎𝑡𝑚 ,𝜆
↓  𝜏𝜆 + 𝐿𝑎𝑡𝑚 ,𝜆

↑           (1) 

 

where Lsensor is the at-sensor radiance in Wm−2 µm−1 sr−1, ε is 

the land surface emissivity (LSE), Bλ(Ts) is the Planck’s law, 

L↓ is the downwelling atmospheric radiance in Wm−2 µm−1 sr−1, 

L↑ is the upwelling atmospheric radiance in Wm−2 µm−1 sr−1, 

and τ is the atmospheric transmittance.  

 

In order to retrieve LST from remote sensing data Land surface 

Emissivity (LSE) must be known. An operational way to 

estimate LSE for Landsat data is to use the NDVI Threshold 

Method (NDVITHM) (Sobrino et al. 2008), which estimates the 

emissivity values from the NDVI considering three different 

cases: 
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𝐿𝑆𝐸 { 

𝜀𝑠𝜆  𝑁𝐷𝑉𝐼 < 𝑁𝐷𝑉𝐼𝑠  (2) 

𝜀𝑉𝜆𝑃𝑉 + 𝜀𝑠 1 − 𝑃𝑉 + 𝑑𝜀𝜆 𝑁𝐷𝑉𝐼𝑠 < 𝑁𝐷𝑉𝐼
< 𝑁𝐷𝑉𝐼𝑉  

(3) 

𝜀𝑉𝜆 + 𝑑𝜀𝜆 𝑁𝐷𝑉𝐼 > 𝑁𝐷𝑉𝐼𝑉 (4) 

 
where Pv is the vegetation proportion (Carlson, Ripley, 1997) 

calculated as follows: 

𝑃𝑉 =  
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑠

𝑁𝐷𝑉𝐼𝑉−𝑁𝐷𝑉𝐼𝑠
 

2
  
  (5) 

 

where NDVIv=0.5 and NDVIs=0.2. The term dε includes the 

effect of the geometrical distribution of the natural surfaces and 

the internal reflections (dε=0 for flat surfaces). For 

heterogeneous surfaces, it can reach a value of 2 % (Li et al. 

2013). F is a shape factor whose mean value, assuming different 

geometrical distributions, is 0.55. 

 
𝑑𝜀 =  1 − 𝜀𝑆  1 − 𝑃𝑉 𝐹𝜀𝑉                            (6)        (6) 

 

TIR data in satellite imagery sensors are stored in DNs so that 

they need to be converted to spectral radiance. Afterwards, 

radiance is converted to brightness temperature as: 

 

𝑇𝑠𝑒𝑛 =
𝐾2

ln(
𝐾1
𝐿𝑠𝑒𝑛

+ 1)
 

   (7) 

where Tsen is the satellite brightness temperature in Kelvin, K1 

and K2 are the band-specific conversion constant taken from the 

metadata file (K1=774.8853 and K2=1321.0789 for the Landsat 

8 band 10; K1=480.8883 and K2=1201.1442 for the band 11).  

 

In this paper, the widely used Split-Window (SW) algorithm is 

applied. The basis of the technique is that the radiance 

attenuation for atmospheric absorption is proportional to the 

radiance difference of simultaneous measurements at two 

different wavelengths (Jiménez-Muñoz et al. 2014). Therefore, 

the LST is retrieved according to: 

 
𝐿𝑆𝑇 = 𝑇𝑖𝑠𝑒𝑛 + 1.378 𝑇𝑖𝑠𝑒𝑛 − 𝑇𝑗𝑠𝑒𝑛  + 0.183 𝑇𝑖𝑠𝑒𝑛 − 𝑇𝑗𝑠𝑒𝑛  

2 − 0.268
+  54.3 − 2.238 𝑤  1 − 𝜀 +  −129.2 + 16.4 𝑤 Δε 

 (8) 

where Tisen and Tjsen are the at-sensor brightness temperatures at 

the bands I and j (10 and 11) in Kelvins, ε is the mean 

emissivity, ε = 0.5( εi + εj), Δε is the emissivity difference, Δε 

=( εi −εj), w is the total atmospheric water vapor content (in 

g·cm−2) retrieved according to Wang et al. (2015) method.  

 

The input data required to obtain w were taken from a nearby 

atmospheric observation station of the Brazilian National 

Institute of Meteorology (INMET) (Figure 1). Image processing 

was automated through the development of algorithms in 

MATLAB environment and Envi 5.3. 

 

3. RESULTS AND DISCUSSION 

3.1 Spatial distribution of LST, NDVI and surface albedo 

The Table 3 shows the descriptive statistics of LST, NDVI and 

surface albedo for winter and summer. The mean of the two 

scenes for each season was considered. Moreover, the 

distribution of the three variables were classified into 

appropriate ranges (Figure 2) and colour-coded to create a 

distribution map of its pattern over the study site. 

 

LST mean was around 293.5 K (20.4ºC) and 299.2 (26ºC) in 

winter and summer, respectively. LST in winter season 

exhibited less variations between pixels in comparison to 

summer. Besides, in the winter all the variables produced the 

least value of standard deviation.  

 

Figure 2b shows more evident LST spatial variations, which are 

certainly related to the land use heterogeneity, more 

significantly detectable in summer season. Guha et al. (2019) 

mentioned that this type of LST variation is associated to the 

change in vegetation abundance and soil moisture content.  

 

The spaces of open field with grasslands demonstrated lower 

temperatures, while the places with some kind of human 

occupation (upper right and left corner) presented higher 

temperatures. It is mainly because the calorific capacity of the 

urban materials (i. e. without vegetation cover) is high due to its 

constitution which has the non-evapotranspiration dry nature, 

causing the pad surface thermal conductivity to be big (Kumar, 

Shekhar, 2015). 

 

 

Figure 2. Spatial distribution Map of winter and summer 

seasons, respectively. (a) and (b) refers to LST; (c) and (d) to 

NDVI; (e) and (f) to Surface albedo. 

 

The highest NDVI values were found in summer season. In 

contrast, the winter season had the lowest values (Figures 2c 

and d). Fontana et al. (2018) commented that this is a typical 

behaviour of the predominant subtropical climate in the region 

of Pampa biome. The authors also pointed out that winter is the 

critical season for cattle ranching, since the lower biomass 

accumulation and consequently lower NDVI values are 

conditioned by solar radiation and air temperature decrease.  

 

The mean of NDVI was 0.77 and 0.59 in summer and winter, 

respectively, which are in agreement with predominantly 

vegetated areas (Table 3). According to Querino et al. (2016) 

NDVI is one of the most important biophysical parameters to 

characterize the canopy. Its spatial and temporal distributions 

are often used in global circulation models to provide 

information about energy flows and water. Thus, changes on the 

biophysical indices imply a deep change of several parameters 

such as photosynthesis, energy balance, evapotranspiration, net 

primary productivity, among others. 
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Surface broadband albedo is essential to obtain reliable 

estimations related to land surface fluxes. Additionally, accurate 

surface albedo information is very important for weather 

forecasting, climate projection and ecosystem modelling (Zoran 

et al. 2013; Mattar et al. 2014). According to Bonan (2008) the 

higher is the vegetation cover, lower is the average surface 

albedo. In other words, tree canopies have lower albedo than 

grasslands; and much lower than bare soils. The results found in 

this work are in accordance, once higher albedos are seen in 

bare soil or urban land covers. 

 

Similar to NDVI response, surface albedo produced lower 

values in winter season compared to summer, which is related 

to the high response of surface albedo changes to climate 

variations (Zoran et al. 2013), as a consequence of the lower 

energy availability in this season. Therefore, changes in climatic 

conditions strongly affect the phenological patterns and biomass 

production of Pampa biome natural grasslands, which are 

reflected on surface albedo. 

 

Season Min Max Mean Std deviation 

  LST   

Winter 291.16 295.59 293.51 0.64 

Summer 296.54 303.77 299.18 1.29 

  NDVI   

Winter -0.39 0.89 0.59 0.12 

Summer -0.34 0.94 0.77 0.13 

  Albedo   

Winter 0.021 0.31 0.14 0.025 

Summer 0.024 0.32 0.17 0.027 

Table 3. Descriptive statistics of LST, NDVI and surface 

albedo. 

 

3.2 Validation of derived LST 

LST was measured in the field using a Campbell Sci/SI-111 

sensor commercialized by Apogee Instruments, Inc., Roseville, 

CA, USA. SI-111 measures thermal-infrared radiance in the 

8.0–14.0 µm range and obtains brightness temperatures with an 

absolute accuracy of ±0.2 K (Tang et al. 2015). The sensor is 

installed in an experimental site located within the study area 

(coordinates: 29º43’27.5’’ S; 53º45’36’’ W) about 30 cm above 

the ground, positioned so that it has a field of view of 22°. 

 

As no in situ measurements were available for 2019, we only 

validated the data from 2018 scenes. Table 4 shows the results 

obtained from the image average (LST retrieved mean), the 

value of the pixel where the sensor is located (LST retrieved 

pixel) and in situ. 

 

TIR data forms basis for monitoring evapotranspiration, water 

stress, estimation of surface energy flux, regional energy 

balance, drought, soil moisture, analysis of yearly land cover 

dynamics, among others (Mukherjee et al. 2018). Therefore, 

accuracy of LST measurements is required. 

Date LST 

Retrieved 

(Mean) 

LST 

Retrieved 

(Pixel) 

LST in 

situ 

LST 

difference 

(Mean) 

LST 

difference 

(Pixel) 
29 August 

2019 

298.96 - - - - 

18 February 

2019 

296.38 - - - - 

26 August 
2018 

288.07 288.55 289.57 -1.50 -1.02 

15 February 

2018 

301.99 299.40 301.04 0.95 -1.64 

Table 4. Validation of LST retrieved from Landsat 8 data with 

in situ measurements in Kelvin. 

 

Landsat 8 TIRS data is able to yield an accuracy of 1.5 K when 

SW technique is applied (Jiménez-Muñoz et al. 2014). Our 

finds are in agreement with the algorithm accuracy because 

direct validation in situ resulted in differences varying between 

1-1.6 K in relation to the satellite measurements (Table 4). 

Although a characteristic LST pattern could be observed, the 

area analysed present enough homogeneity. Therefore, mean 

values of all LST pixels can be assumed. 

 

3.3 Relationship of LST with NDVI and surface albedo 

Figures 3 and 4 reveal the correlation between NDVI-LST and 

albedo-LST for winter and summer, respectively. The scatter 

plots of the two seasons demonstrated negative NDVI-LST 

relationship, mainly because NDVI represents the amount of 

biomass on the imagery and the low temperature is related to 

the high NDVI values (Querino et al. 2016). Similar results 

were found by Nimani (1993) and Deng et al (2018), in which 

the authors commented that the LST and NDVI of forest land, 

grassland and cultivated land are meant to have this behaviour, 

differently from urban environments (Guha et al. 2019). 

 

 

Figure 3. Scatter plot of the LST-NDVI and LST-Albedo 

relationships for the two winter images evaluated. 

 

Winter season showed a weaker correlation relative to summer 

(Figure 3), when a higher amount of healthy green vegetation is 

reflected on NDVI values. Summer produced a correlation 

coefficient of -0.91, whereas winter exhibited -0.85 (Table 5). 

In this context, Gallo and Owen (1999) and Marzbana et al. 

(2018) found that the strength of correlations between the 

variables depends on the season. According to the authors, 

while summer provides the strongest predictive capacity, the 

weakest is observed during winter season. 
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Figure 4. Scatter plot of the LST-NDVI and LST-Albedo 

relationships for the two summer images evaluated. 

 

Figures 3 and 4 also show the relationship between surface 

albedo and LST. In fact, LST increases with decreasing albedo 

in summer season, which characterizes an inverse relationship 

with albedo. In the summer, correlation coefficient between 

albedo and LST was -0.33. Winter season exhibited an opposite 

behaviour, with a mean correlation of 0.37.  

 

Relationship Winter (Mean) Summer (Mean) 

LST-NDVI -0.85 -0.91 

LST-Albedo 0.37 -0.33 

Table 5. Correlation coefficients for LST-NDVI, LST-Albedo 

relationships. 

 

Analysing the images separately (Figures 3 and 4) it is possible 

to note that the dates of 29 August 2018 (winter), 18 February 

2018 and 15 February 2019 (summer) produced a trapezoid 

behaviour of albedo-LST. This relation is widely used by 

models that calculate evapotranspiration and the latent heat flux 

from remote sensing data. Yang and Wang (2011) assessed 

three simple models for estimating the evaporative fraction over 

the USA. All the models used only the scatter plot of NDVI or 

surface albedo with LST. The authors reported that the shapes 

of NDVI scatter plots are more clearly delineated than those of 

the albedo related to the LST difference. 

 

4. CONCLUSIONS 

Several studies have provided important information on LST 

and its relationship with driving environmental factors. The 

LST obtained by thermal remote sensing in conjunction with 

vegetation indices statistics allows researchers to comprehend 

the extent of the LST–Vegetation relationship and its efficacy. 

This study investigated the relations between LST-NDVI and 

surface albedo-LST in the natural grasslands of Pampa biome.  

 

The LST retrieved from Landsat 8 data was consistent with the 

actual temperature measured in the field. The LST-Vegetation 

relationship in the Pampa biome grasslands varies with the 

season so that caution must be taken in assuming a regular 

behaviour between LST and remote sensing vegetation 

variables, such as empirical relationships that are widely used in 

many scientific fields. 
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