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ABSTRACT:

We propose a new technique for SAR image texture characterization based on ordinal pattern transition graphs. The proposal con-
sists in (i) transforming a 2-D patch of data into a time series using a Hilbert Space Filling Curve, (ii) building an Ordinal Pattern
Transition Graph with weighted edges; (iii) obtaining a probability distribution function from this graph; (iv) computing the Entropy
and Statistical Complexity of this distribution. The weight of the edges is related to the absolute difference of observations. This
modification takes into account the scattering properties of the target, and leads to a good characterization of several types of tex-
tures. Experiments with data from Munich urban areas, Guatemala forest regions, and Cape Canaveral ocean samples demonstrate
the effectiveness of our technique, which achieves satisfactory levels of separability.

1. INTRODUCTION

Surface classification and land use are among the most impor-
tant applications of Synthetic Aperture Radar (SAR) imaging
(Lee et al., 2004), for which supervised and unsupervised clas-
sification algorithms have been proposed (Han et al., 2020, Huang
et al., 2020, Xie et al., 2020).

Classification techniques rely on the extraction and analysis of
features from the data, and from additional information and
prior knowledge about the scene, the sensor and the acquisi-
tion conditions. Texture is among the features that carries most
information and, as such, it is important to characterize it in a
quantitative manner.

The texture in SAR images is characterized twofold, namely by
the marginal properties of the data, and by their spatial struc-
ture (Numbisi et al., 2018). In this work we focus on the second
approach.

The most widely used approach to obtain textural features from
SAR imagery is through co-ocurrence matrices and Haralick’s
descriptors (Yu et al., 2019). Other approaches include the
Fourier power spectrum (Florindo, Bruno, 2012), and random
fields (Zhu et al., 2016).

In our approach, we opt to linearize the image patches and ana-
lyze the resultant 1-D signals as time series. By doing that, we
reduce the dimensionality of the data and map spatial depen-
dence of pixels to temporal correlation. Then, we extract ordi-
nal patterns from the time series and propose a novel weighted
graph of pattern transitions that is able to discriminate patterns
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correspondent to different amplitude levels. We then used well-
known features from information theory to characterize the im-
age patches.

The main contribution of this work is the proposal of a novel
technique for SAR image texture characterization that is based
on a modified version of ordinal pattern transition graphs, which
is able to discriminate similar patterns with different amplitude
levels. Our approach yields to interesting characterization of
several types of textures as shown in experiments with real data
achieving satisfactory levels of separability.

The article was divided as follows: Section 2 presents the pro-
posed methodology. Section 2.1 reports how the patch lin-
earization process of the images occurs. Section 2.2 describes
our technique of ordinal amplitude transition graph weighting
by amplitudes. In Section 2.3 we report the Information The-
ory descriptors used throughout this work. Section 3 shows the
results obtained in characterizing textures. We present our con-
clusions in Section 4.

2. METHODOLOGY

Our procedure consists of the following steps:

1. transforming a 2-D patch of data into a time series using a
Hilbert Space Filling Curve,

2. building an Ordinal Pattern Transition Graph with weighted
edges;

3. obtaining a probability distribution function from this graph;

4. computing the Entropy and Statistical Complexity of this
distribution.
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The technique is illustrated in Figure 1, and detailed in the fol-
lowing.

Figure 1. Outline of the technique for the characterization of
textures.

2.1 Linearization of image patches

In this step, we perform a data dimensionality reduction by
turning 2-D patches into 1-D signals. For this, we opt to do
a linearization of the data through techniques that maintain the
spatial correlation of the image. This could be accomplished
by reading the data by lines, columns or any transformation. In
Step 1 we employ a Hilbert Space Filling Curve (Lee, Hsueh,
1994).

Space filling curves were first employed by Nguyen and Quin-
queton (1982), to map a texture into a one-dimensional signal.
When used as scanning methods of an image, such functions
preserve relevant properties of pixel spatial correlation (Lee,
Hsueh, 1994).

Assuming an image patch is supported by a N ×N dimension
grid, whereN is a power of 2, we have the following definition.

Definition 1 An image scan is a bijective function f : N×N→
N in the ordered pair set {(i, j) : 1 ≤ i, j ≤ N}, which de-
notes the points in the domain, for the closed range of integers
{1, . . . , N2}. A scan rule is {f−1(1), . . . , f−1(N2)}.

This Definition imposes that each pixel is visited only once.

Space filling curves, such as raster-1, raster-2 and Hilbert scan-
ning techniques stipulate a proper function f . Hilbert curves
scans an array of pixels of dimension 2k × 2k, k ∈ N, never
keeping the same direction for more than three consecutive points,
as shown in Figure 2. Using the Hilbert curve, we can reduce
the data dimensionality by maintaining the spatial dependence
information of the analyzed textures. In this work, we use only
a Hilbert Curves scale in images of dimension 128× 128.

Figure 2. Hilbert space filling curve in areas of: (a) 8× 8, (b)
16× 16 and (c) 32× 32.

2.2 Weighted Ordinal Patterns Transition Graph

Step 2 consists of two stages. In the first, the time series is
transformed into a sequence of ordinal patterns. In the second,
we build a weighted graph describing the transitions between
these patterns.

The representation of time series by ordinal patterns was intro-
duced by (Bandt, Pompe, 2002) as a transformation resistant to
noise, and invariant to nonlinear monotonic transformations.

Consider X ≡ {xt}Tt=1 a real valued time series of length T .

Let AD (withD ≥ 2 andD ∈ N) be the symmetric group of or-
der D! formed by all possible permutation of order D, and the
symbol component vector π(D) = (π1, π2, . . . , πD) so every
element π(D) is unique (πj 6= πk for every j 6= k). Consider
for the time series X ≡ {xt}Tt=1 its time delay embedding rep-
resentation, with embedding dimension D ≥ 2 and time delay
τ ≥ 1 (τ ∈ N, also called “embedding time”, “time delay”, or
“delay”):

X
(D,τ)
t = (xt, xt+τ , . . . , xt+(D−1)τ ), (1)

for t = 1, 2, . . . , N with N = T − (D − 1)τ . Then the
vector X(D,τ)

t can be mapped to a symbol vector πDt ∈ AD.
This mapping should be defined in a way that preserves the
desired relation between the elements xt ∈ X

(D,τ)
t , and all

t ∈ {1, . . . , T − (D − 1)τ} that share this pattern (also called
“motif”) have to mapped to the same πDt .

We define the mapping X
(D,τ)
t 7→ πDt by ordering the obser-

vations xt ∈ X
(D,τ)
t in increasing order. Consider the time se-

ries X = (1.8, 1.2, 3.2, 4.8, 4.2, 4.5, 2.3, 3.7, 1.2, .5) depicted
in Fig. 3. Assume we are using patterns of length D = 5

with unitary time lag τ = 1. The code associated to X
(5,1)
3 =

(x3, . . . , x7) = (3.2, 4.8, 4.2, 4.5, 2.3), shown in black, is formed
by the indexes in π5

3 = (1, 2, 3, 4, 5) which sort the elements of
X

(5,1)
3 in increasing order: 51342. With this, π̃5

3 = 51342, and
we increase the counting related to this motif in the histogram
of all possible patterns of size D = 5.

The dash-dot line in Fig. 3 illustrates X
(5,2)
1 , i.e. the sequence

of length D = 5 starting at x1 with lag τ = 2. In this case,
X

(5,2)
1 = (1.8, 3.2, 4.2, 2.3, 1.2), and the corresponding motif

is π̃5
1 = 51423.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

3.2

4.8

4.2

4.5

2.3

1.8

1.2

π5

π4

π3

π2

π1

1 2 3 4 5 6 7 8 9 10
t

x
t

Figure 3. Illustration of the Bandt and Pompe coding

The classical approach consists in analyzing the histogram of
these patterns. Alternatively, one may form an oriented graph
with the transitions from π̃Dt to π̃Dt+1. We modify this last ap-
proach by assigning weights to the edges related to the absolute
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difference of the observations. This modification takes into ac-
count the scattering properties of the target, and leads to a good
characterization of several types of textures.

Denote Π the sequence of symbols obtained by a given series
X

(D,τ)
t . The Bandt-Pompe probability distribution is the rela-

tive frequency of symbols in the series against D! possible per-
mutations of patterns {π̃Dt }D!

t=1:

p(π̃Dt ) =
#
{
t : t = 1, . . . , T − (D − 1)τ ;X

(D,τ)
t is of type π̃Dt

}
T − (D − 1)τ

,

(2)
that meets the conditions p(π̃Dt ) ≥ 0 and

∑D!
i=1 p(π̃

D
t ) = 1.

The Ordinal Pattern Transition Graph G = (V,E) represents
the transitions between two consecutive ordinal patterns over
time t. The vertices are the patterns, and the edges the transi-
tions between them: V = {vπ̃Dt }, and E = {(vπ̃Dt , vπ̃Dt+1

) :

vπ̃Dt
, vπ̃D

t+1
∈ V } (Borges et al., 2019).

Recent works propose a weighting in the calculation of rela-
tive frequencies for ordinal patterns with different amplitude
variances, making them contribute differently to the final value
of permutation entropy (PE) and thus incorporating amplitude
change information within a given set (Fadlallah et al., 2013).
However, these methods do not consider the amplitude differ-
ence present in different time series, weighing them similarly
when calculating the final value of their probabilities. There-
fore, data with different amplitudes but with similar variance
dynamics are not discriminated, losing important information
about the system dynamics.

To counterbalance these facts, we propose a modification of the
current ordinal pattern transition graph by incorporating mean-
ingful time series information.

Two approaches are considered in relation to the weight of edges
in the literature. Some authors employ unweighted edge (Mc-
Cullough et al., 2015, Kulp et al., 2016) representing only the
existence of such transitions, while others apply the frequency
of transitions (Sorrentino et al., 2015, Zhang et al., 2017). The
weights W = {wv

π̃D
i
,v
π̃D
j

: vπ̃D
i
, vπ̃D

j
∈ V } assigned to each

edge describes the chances of transition between two particu-
lar patterns (vπ̃D

i
, vπ̃D

j
) calculated by their respective relative

frequencies, ie:

wv
π̃D
i
,v
π̃D
j

=
|Ππ̃D

i
,π̃D
j
|

T − (D − 1)τ − 1
, (3)

where |Ππ̃D
i
,π̃D
j
| is the number of transitions from pattern π̃Di

to pattern π̃Dj and
∑

v
π̃D
i
,v
π̃D
j

wv
π̃D
i
,v
π̃D
j

= 1, and the denom-

inator is the number of transitions between sequential patterns
in the series of motifs of length T − (D − 1)τ .

Our proposal, henceforth referred to as Weighted Amplitude
Transition Graph (WATG), incorporates the absolute difference
between the observations that produced the patterns.

First, each X time series is scaled to [0, 1], since we are inter-
ested in a metric able to compare data sets:

xi − xmin

xmax − xmin
7−→ xi, (4)

where xmin and xmax are, respectively, the minimum and max-
imum values of the series. This transformation is relatively sta-
ble before contamination, e.g., if instead of xmax we observe
kxmax with k ≥ 1, the relative values are not altered. Never-
theless, other more resistant transformations as, for instance, z
scores, might be considered.

Each X
(D,τ)
t vector is associated with a weight βt that measures

the largest difference between its elements:

βt = max{xi − xj}, (5)

where xi, xj ∈ X
(D,τ)
t .

Traditionally, the transition graph assigns uniform weight to
each transition between patterns and normalizes the result ob-
tained by dividing by the total transitions. In this modification,
the wv

π̃D
i
,v
π̃D
j

weights assigned to each edge depict the ampli-

tude difference observed in the transition. So we have that:

wv
π̃D
i
,v
π̃D
j

=
∑

i:{X(D,τ)
t 7→π̃D

i
}

∑
j:{X(D,τ)

t 7→π̃D
j
}

|βi − βj |. (6)

Thus, the probability distribution taken from the weighted am-
plitude transition graph is given as follows:{

λv
π̃D
i
,v
π̃D
j

= 1, if (vπ̃D
i
, vπ̃D

j
) ∈ E

λv
π̃D
i
,v
π̃D
j

= 0, otherwise. (7)

p(π̃Di , π̃
D
j ) =

λv
π̃D
i
,v
π̃D
j

· wv
π̃D
i
,v
π̃D
j∑

v
π̃Da

,v
π̃D
b

wv
π̃Da

,v
π̃D
b

. (8)

Note that the conditions p(π̃Di , π̃Dj ) ≥ 0 and
∑

π̃D
i
,π̃D
j
p(π̃Di , π̃

D
j ) =

1 are satisfied.

Thus, series with uniform amplitudes have edges with prob-
ability of occurrence well distributed along the graph, while
those with large peaks have edges with probability of occur-
rence much higher than the others.

Figure 4. Example of (a) the first 100 samples of the
sin(2x) · cos(2x) series and (b) the WATG for the series with

D = 3 and τ = 1

2.3 Information-Theoretic Descriptors

Entropy measures the disorder or unpredictability of a system
characterized by a probability measure P.

Let P = {p(π̃D1 ,π̃D1 ), p(π̃D1 ,π̃D2 ), . . . , p(π̃D
D!
,π̃D
D!

)} = {p1, . . . , pD!2}
be the probability distribution taken from the time series weighted
amplitude transition graph X. The normalized Shannon entropy
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is given by:

H(P) = − 1

2 logD!

D!2∑
`=1

p` log p`. (9)

The ability of the entropy to capture system properties is lim-
ited, so it is necessary to use it in conjunction with other des-
criptors to perform a more complete analysis. Other interesting
measures are distances between the P probability function and
a probability measure that describes a non-informative process,
typically the uniform distribution.

The Jensen-Shannon distance to the uniform distribution U =
( 1
D!2

, . . . , 1
D!2

) is a measure of how similar the underlying dy-
namics are to a process without information; it is calculated as:

Q′(P,U) =

D!2∑
`=1

(
p` log

p`
u`

+ u` log
u`
p`

)
. (10)

This quantity is also called “disequilibrium.” The normalized
disequilibrium is Q = Q′/max{Q′}.

Conversely to entropy, statistical complexity seeks to find in-
teraction and dependence structures among the elements of a
given series, being an extremely important factor in the study
of dynamic systems.

The Statistical Complexity is then defined as (Lamberti et al.,
2004):

C(P,U) = H(P)Q(P,U). (11)

In our analysis, each time series can then be described by a point
(H(P), C(P,U)). The set of all pairs (H(P), C(P,U)) for any
time series described by patterns of length D lies in a compact
subset ofR2: the Entropy-Complexity plane.

Through such a tool it is possible to discover the nature of the
series, determining if it corresponds to a chaotic (or other deter-
ministic dynamics) or stochastic sequences.

3. TEXTURAL CLASSIFICATION OF SAR REGIONS

Widely used in recognizing geographical features and patterns,
synthetic aperture radar (SAR) images are rich in texture infor-
mation. For this analysis, we used the HH intensity band of
three different region SAR images with uninhabited aerial ve-
hicle (UAVSAR) SAR data, which provide fully polarimetric
SAR observations:

• Sierra del Lacandon National Park, Guatemala (acquired
on April 10, 2015)1;

• Cape Canaveral Ocean Regions (acquired on September
22, 2016);

• Urban area of the city of Munich, Germany (acquired on
June 5, 2015)2.

1https://uavsar.jpl.nasa.gov/cgi-bin/product.pl?job

Name=Lacand 30202 15043 006 150410 L090 CX 01#dados
2https://uavsar.jpl.nasa.gov/cgi-bin/product.pl?job

Name=munich 19417 15088 002 150605 L090 CX 01#data

We used 160 samples of size 128×128, with the following con-
figuration: 40 samples from Guatemalan forest regions; 80 sam-
ples from the oceanic regions of Cape Canaveral, where they
were divided into two types that have distinct contrast informa-
tion; and 40 samples of urban regions of the city of Munich.
Figure 5 shows examples of each of them.

Figure 5. Types of regions analyzed: Forest, Sea Type 1, Sea
Type 2, and Urban.

Since the symbolization process is invariant to monotonous trans-
formations and resistant to contamination effects, contrast chan-
ges are not capable of causing changes in the final results ob-
tained by the descriptors. Thus, the different types of oceanic
regions considered in this work were studied as a single more
general class.

Figure 6 shows examples of forest, sea and urban samples as
time series, after the linearization process.

Figure 6. Analysis of the amplitude of the different types of
regions: (a) Oceanic Region; (b) Forest Regions and (c) Urban

Regions

As we can see in Figure 7, when we apply small delay and di-
mension values (the best result was obtained when D = 3 and
τ = 1) with WATG, in urban region data, we obtained a prob-
ability distribution with few extreme values, representing the
transitions of the maximum values of the series. On the other
hand, oceanic and forest regions have as their main discrimi-
nating descriptor the statistical complexity that portrays the de-
gree of temporal dependence structure between the symbols and
consequently between the pixel intensity values.

Figure 8 shows the results for several dimension values m and
delays τ . Since such values inform us of intrinsic character-
istics of the dynamics of the series in their specific domains,
inadequate values may hide this kind of knowledge about the
data, and this analysis step is extremely crucial.

As shown in Figure 8, class discrimination decreases with τ ,
which means that there is a loss of effect from the peak values
found in the series, thus making a better distinction between
classes when we have τ = 1. As WATG captures amplitude
differences between different time series, when the values of
the τ scale increase, well-distributed weight plots are formed,
thus obtaining increasing entropy values. On the other hand,
as we increase D, the granularity of the information increases,
capturing more spatial dependence structures in the data and,
consequently, acquiring greater statistical complexity. As can
be seen in Figure 8. There is a relationship between the dimen-
sion variable of ordinal patterns and the discrimination between
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the analyzed regions that presents its best result for D = 3. On
the other hand, when we have D = 6, textures acquire a lower
entropy value and become harder to distinguish.

Figure 7. Location of Guatemala (Black), Cape Canaveral
(Blue) and Munich (Violet) in the H × C plane. Defaults were

calculated with D = 3 and τ = 1.

4. CONCLUSION

We proposed a new weighting technique in the formation of
Ordinal Pattern Transition Graphs. The edge weights are pro-
portional to the amplitude variations during the transitions.

To test the proposed technique we performed the characteriza-
tion of different regions in textures of SAR images.

As a result, in addition to perfectly separating urban areas from
the others analyzed by entropy values, we are still able to differ-
entiate oceanic and forest areas through their different values of
statistical complexity, which informs us of the degree of tem-
poral dependence between their elements.

5. SOURCE CODE AVAILABILITY

The source code generated during the current study are avail-
able in the SAR-WATG repository, https://github.com/Edu
ardaChagas/SAR-WATG.
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