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ABSTRACT: 

 

The objective of this study is to evaluate the spectral difference between and within 11 tree species belonging to Brazilian Atlantic 

Forest located in the countryside of São Paulo State, Brazil. Tree species with different development stages may have different 

reflectance spectra because of the structural and phenological influence on it. Tree structure can affect the crown spectra due to the 

differences in geometry of view and density of shadow and sunlight pixels. Additionally, reflectance spectra can be similar between 

tree species belonging from different species, which affect the classification accuracy of these targets. In this sense, we evaluate the 

spectral difference between highly diverse Atlantic Forest using two different features extracted from individual tree crowns (ITCs). 

Mean reflectance spectra and mean normalized reflectance spectra of each ITC were used. They were computed from hyperspectral 

images acquired with sensor onboard unmanned aerial vehicle. Differences between tree species and within-species were calculated. 

Wilcoxon‐Mann‐Whitney test was applied in order to statistically evaluate whether the reflectance spectra were different. Results 

showed that the normalized values are more propense to increase the classification accuracies than using the mean values since it 

reduces the variability within-species and present a higher number of different values between-species. 

 

 

 

1. INTRODUCTION 

Tropical Atlantic forest is an interesting research topic because 

of its biodiversity wealth in contrast with its deforestation and 

degradation over the years (Myers et al., 2000). Most of the 

remnant of Brazilian Atlantic forest are fragmented (Ribeiro et 

al., 2009). Additionally, this type of forest protection and 

restoration is an important key to protect the ecosystem services 

(Rezende et al., 2018).  

 

Hyperspectral data can provide detailed information about targets 

which are valuable to classification purposes. especially when 

working with targets like vegetation where the reflectance spectra 

can be similar (Price, 1994). Tree species reflectance is affected 

by a series of factors such as leaves disposal and shape, structure, 

soil reflectance and geometry of view (Asner, 1998). Thus, the 

same tree species can have different spectra depending on its 

stage of development and location, which can be a challenging 

factor when producing tree species maps. 

 

Spectral difference among tree species was previously verified 

by Castro-Esau et al. (2006) and Ferreira et al. (2013) who found 

out that the spectral distance is higher between tree species than 

within-species, i.e., the spectral distance is higher for trees 

belonging to different species than for samples belonging to the 

same species. They evaluated the leaves reflectance spectra to 

contribute for monitoring efforts and biodiversity maintenance 

since the reflectance spectra influences the tree species 

classification (Castro-Esau et al., 2006; Ferreira et al., 2013).  

 

 
*  Corresponding author 

 

Although Castro-Esau et al. (2006) also evaluated the tree crown 

spectra of five different tree species, they used a field 

spectroradiometer. When applied in image classification the 

acquisition of crown spectra is based on the pixel values. In this 

case, the geometry view needs to be mitigated since the crowns 

present different densities of shadows and sunlight depending of 

the tree structure. Moreover, the method to extract the crown 

spectra is equally important to classification purposes. 

 

In this sense, the objective of this work is to evaluate the tree 

species variability among the samples belonging to the same 

class (within-species) and between-tree species. Spectral 

differences were calculated to two different features extracted 

from the individual tree crowns (ITCs), one corresponding to the 

mean spectra of each ITC and the other being the normalized 

spectra of each ITC. In addition, Wilcoxon‐Mann‐Whitney test 

was applied in order to verify statistically whether the spectra 

were different. 

     

 

2. MATERIALS AND METHODS 

2.1 Tree species identified in field 

In this study, 11 tree species identified in field were studied. They 

belong to a submontane semideciduous seasonal forest located in 

Euclides da Cunha Paulista, countryside of São Paulo State, 

Brazil. A total of 101 tree spatial positions were identified in 

field. Their tree species were recognized by a professional who 

works in an arboretum with tree species of this type of forest. The 

tree species positions were collected inside a transect area with 
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approximate length and width of 500 m by 130 m, respectively 

(Miyoshi et al., 2019). Trees from the transect area characterizes 

initial to advanced stage of ecological succession (Berveglieri et 

al., 2018). 

 

Table 1 presents the number of trees identified in each group of 

tree species as well as its characteristics which are evergreen, 

semideciduous and deciduous. These characteristics and names 

were extracted from Lorenzi (1992a, 1992b, 1992c). 

 

Specie Abbreviation ITCs Characteristics 

Astronium graveolens AG 4 Deciduous 

Apuleia leiocarpa AL 10 Deciduous 

Aspidosperma polyneuron AP 3 Evergreen 

Aspidosperma subincanum AS 4 Deciduous 

Copaifera langsdorffii CL 17 Semideciduous 

Endlicheria paniculata EP 7 Evergreen 

Helietta apiculata HA 10 Evergreen 

Hymenaea courbaril HC 11 Semideciduous 

Inga vera IV 8 Semideciduous 

Pterodon pubescens PP 7 Deciduous 

Syagrus romanzoffiana SR 20 Evergreen 

Table 1. Tree species and its number of samples identified in the 

study area 

 

2.2 Hyperspectral imagery 

Spectral features were extracted from a dataset of hyperspectral 

images acquired in July 1st, 2017 previous used by 

Miyoshi et al. (2019). Images were acquired with the Rikola 

camera which is based on the Fabry-Pérot Interferometer (FPI). 

This camera can acquire up to 25 spectral bands in the visible to 

near-infrared range (500 nm to 900 nm). Spectral bands were set 

up as shown in Table 2, which also present the full width half 

maximum (FWHM) of each band. 

 

λ FWHM λ FWHM λ FWHM 

506.22 12.44 628.73 15.30 720.17 19.31 

519.94 17.38 650.96 14.44 729.57 19.01 

535.09 16.84 659.72 16.83 740.42 17.98 

550.39 16.53 669.75 19.80 750.16 17.97 

565.10 17.26 679.84 20.45 769.89 18.72 

580.16 15.95 690.28 18.87 780.49 17.36 

591.90 16.61 700.28 18.94 790.30 17.39 

609.00 15.08 710.06 19.70 819.66 17.84 

620.22 16.26     

Table 2. Spectral setting of the FPI camera used to acquire the 

images use in this study. 

 

The camera was onboard the custom UX4 UAV and the flight 

height was set up to 160 m above ground; UAV speed was setup 

to 4 m/s. One hyperspectral image was acquired ever two seconds 

providing forward overlap higher than 70% and side overlap of 

approximately 50%. 

 

Steps to acquire the orthomosaic of hyperspectral images 

included the geometric and radiometric processing described in 

Honkavaara et al. (2013, 2017) and Miyoshi et al. (2018, 2019) 

and can be summarized as: 

 

1. Radiometric and laboratory corrections. 

2. Exterior orientation parameters (EOPs) and interior 

orientation parameters (IOPs) determination. 

3. Radiometric block adjustment and orthomosaics 

generation. 

4. Pixels representing the digital numbers (DNs) 

transformed to reflectance factor values. 

These four steps were performed using the Hyperspectral imager 

software (version 1.1) (Senop Ltd.,Oulu, Finland), the radBA 

software developed by the Finnish Geospatial Research Institute 

(Honkavaara et al., 2013), the Agisoft PhotoScan software 

(version 1.3) (AgiSoft, Saint Petersburg, Russia) and the ENVI 

software (version 3.1) (Exelis Visual Information Solutions, 

Boulder, Colorado). The final product was the hyperspectral 

orthomosaic with 10 cm of ground sample distance (GSD) with 

pixels in reflectance factor values. 

  

2.3 Spectral differences 

The method adopted to calculate the spectra differences were 

based on the distance from Price (1994) (Equation 1). Spectral 

differences within-species were calculated for all pairwise 

combinations, summarizing a total number of combinations as 

following (tree species/ number of combinations): Helietta 

apiculata (90); Endlicheria paniculata (21); Copaifera 

langsdorffii (136); Apuleia leiocarpa (45); Astronium graveolens 

(6); Aspidosperma subincanum (6); Inga vera (28); Hymenaea 

courbaril (55); Syagrus romanzoffiana (190); Aspidosperma 

polyneuron (3); Pterodon pubescens (21). To the between-

species spectral difference, a total of 55 pairwise combinations 

were calculated. 

𝐷 = √
1

𝑁 − 1
∑ [𝑆1(𝜆𝑖)  − 𝑆2(𝜆𝑖)]2

𝑁

𝑖=1
 (1) 

where, D is the spectral distance between spectra S1 and S2; N is 

the number of spectral bands and the index i represents each 

spectral band where the difference will be calculated. 

 

This difference is given by the root mean square difference 

between two spectra and averaged through the number of spectral 

bands since they are uniform distributed for all tested spectra 

(Price, 1994). Price (1994), who evaluated this metric for 

distinguished targets, found out that corn samples can have D 

values up to 7.56%, which could be a potential problem to 

distinguish vegetation targets, such as sunflower and alfalfa. 

Castro-Esau et al. (2006) calculated D using different pairwise 

combinations including different sites and seasons. They 

observed that leaves from the same tree species may have 

different spectral characteristics due to its content. 

Additionally, the Wilcoxon-Mann‐Whitney test was applied to 

each pairwise combination between-species and for each spectral 

band with confidence level of 95% (α = 95%). This test is applied 

when there are not enough samples to affirm that they follow a 

normal distribution or even when the samples do not follow the 

normal distribution (Mann and Whitney, 1947; Nachar, 2008). It 

is a non-parametric test which verifies if two groups belong to 

the same population or not. The null hypothesis states that the 

two groups belong to the same population whereas the alternative 

hypothesis states that the groups belong to distinct populations. 
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The hypothesis can be calculated by the medians of each group 

(Nachar, 2008): 

H0: θsp1 = θsp2, 

H1: θsp1 ≠ θsp2 

where, θ is the median of each tree species to be compared sp1 

and sp2 to each spectral band. 

Considering 11 tree species, there are a total of 55 pairwise 

combinations for each spectral band, summing up a total of 1375 

tests. This number of hypothesis tests was applied for the mean 

spectra, as well as for the mean normalized spectra, using the 

SciPy 1.1.0 package for Python (Virtanen et al., 2019). 

 

The mean value was obtained by the arithmetic mean obtained 

from the pixels belonging to its respective polygon. Moreover, 

the mean normalized value was obtained by the arithmetic mean 

of normalized pixels, i.e., the pixel value of a band by the sum of 

this pixels in all spectral bands (Dalponte et al., 2019). The 

normalization tends to reduce the differences between the sunlit 

and shadowed pixels, assuming a uniformity distribution across 

the crown (Nevalainen et al., 2017; Dalponte et al., 2019; Yu et 

al., 1999). The normalization process was performed in order to 

reduce the spectra variability intra-samples belonging to the same 

tree species.  

 

 

3. RESULTS AND DISCUSSION 

Mean reflectance factor spectra of each tree species are given in 

Figure 1, where it is possible to see that the highest differences 

are in the red-edge region. However, visual confusion is noticed 

among Helietta apiculata, Inga vera, Hymenaea courbaril, 

Apuleia leiocarpa, and Aspidosperma subincanum even in the 

near-infrared region, which may affect these tree species 

classifications. In this region of the electromagnetic spectrum, the 

spectra are affected by the canopy structure since the leaves 

density and format influences the density of shadowed and sunlit 

pixels. In the visible part of the electromagnetic spectrum, visual 

similar response among all tree species are noticed. In this region, 

the vegetation spectra are mainly influenced by the pigment 

content of leaves, such as chlorophyll and carotenoids (Jensen, 

2005). 

 

 

 

Figure 1. Mean spectra for each tree recognized in field. Mean 

spectra extracted from the hyperspectral data 

 

Figure 2 presents the distance D for each pairwise combination 

between-species using the mean reflectance factor spectra. The 

highest differences are for Aspidosperma polyneuron to the other 

tree species which indicate that this tree species presents higher 

difference in amplitude when compared to the other tree species, 

specially from Pterodon pubescens where the difference was 

0.0688. Considering the difference between Aspidosperma 

polyneuron with Aspidosperma subincanum, the spectral 

difference is 0.0410 showing that even belonging to the same 

genus, they are more spectrally different when comparing 

Aspidosperma polyneuron with Syagrus romanzoffiana, for 

example, where D = 0.0215. 

 

The smallest differences were obtained to the Hymenaea 

courbaril with Apuleia leiocarpa and with Aspidosperma 

subincanum both with distance equal 0.0019. Although Apuleia 

leiocarpa and Aspidosperma subincanum are deciduous and 

Hymenaea courbaril is semideciduous, the season when the 

images were acquired may have influenced its spectra. It is 

important to highlight that the images were acquired in July 1st, 

2017, dry season in São Paulo State, specially where the images 

were acquired. In addition, observing the results from Figure 2 

and comparing with the mean spectra of each tree species from 

Figure 1 it is observed that these values of spectral differences 

are in accordance with the spectra noticed in Figure 1. As pointed 

out previously, there was a visual confusion between the spectra 

of these tree species. 

 

In sequence, Apuleia leiocarpa with Aspidosperma subincanum 

(D = 0.0023), Inga vera with Apuleia leiocarpa (D = 0.0026) and, 

Inga vera with Aspidosperma subincanum (D = 0.0027). From 

these distances it is noticed the challenge when classifying the 

tree species since it is suggested that they have similar reflectance 

factor spectra. Moreover, it is observed that the smallest 

differences are mainly for Apuleia leiocarpa, Aspidosperma 

subincanum and Hymenaea courbaril.  Even belonging to 

different botanical genus and families, with different leaves sizes 

and blossoming, their reflectance factor spectra is similar. 

Considering the hypothesis test, the results showed that 443 of 

1375 tested pairwise combinations had p-value lower than 0.05, 

being the null hypothesis rejected. In other words, 32% of the 

observations are likely to belong to different populations, i.e., 

spectrally different. 

 

When using the mean normalized reflectance factor to calculate 

the spectral differences, distinct results are obtained. Spectral 

differences between-species using the mean values of the 

normalized pixel, varied from 0.004 to 0.0081 (Figure 3). Highest 

differences were for Pterodon pubescens to the other tree species. 

Indicating that this tree species is more likely to be not confused 

with the other tree species when performing a tree species 

classification using the normalized spectral response as feature.  

 

The smallest D value was for the pairwise of Endlicheria 

paniculata with Hymenaea courbaril (D = 0.0004). In fact, 

Hymenaea courbaril, together with Apuleia leiocarpa and 

Copaifera langsdorffii present the smaller values to the other tree 

species being possible to infer that confusion of these species can 

occur during a classification process when using the normalized 

spectra. Thus, it is observed that the different shadowed and 

sunlit pixels auxiliary to differ these tree species. Moreover, 

results from the hypothesis test indicates that 40% of the 

observations belongs to different population, i.e., 555 cases of the 

1375 tests.  
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Figure 2. Spectral difference between the tree species – mean 

reflectance factor spectra. The y-axis represents the tree species 

pairwise combination 

 

 

 

Figure 3. Spectral difference between the tree species – mean 

normalized features. The y-axis represents the tree species 

pairwise combination. 
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Figure 4 presents the average spectral variability of each tree 

species considering the mean reflectance factor spectra and the 

mean normalized spectra and its standard deviation. As expected, 

the highest differences within-species are for the mean 

reflectance factor spectra, indicating that the spectral variability 

of reflectance factor intra species are higher using the mean 

spectra than using the normalized values. Before the 

normalization, the average spectral reflectance factor difference 

among the samples of Astronium graveolens was 0.0095. After 

the normalization, the value was reduced to 0.0007 less than 

twice of the original value. Even Aspidosperma polyneuron, 

which presented the smallest difference through the six pairwise 

combinations, the average difference was reduced from 0.0017 

to 0.0008. 

 

 

Figure 4. Spectra difference within-species considering the 

mean spectra and the mean normalized spectra for each sample 

From results obtained using the mean normalized spectra 

(Figure 4) it is possible to see that the within-species differences 

presented lower values as well as degrees of variation. Thus, can 

be suggested that the use of normalized spectra decreases the 

variability from samples belonging to the same class. Differences 

in crowns illuminations caused by the acquisition’s geometry and 

trees structure are reduced when using the normalized values and 

could improve the classifier performance. 

 

There were no values higher than 0.0046 for the differences 

within-species belonging to the same class when considering the 

normalized spectra. The smallest value is no longer for 

Aspidosperma polyneuron, but for Aspidosperma subincanum 

(0.0008). Indeed, the magnitude of spectral differences has been 

completely changed. Inga vera was the fifth tree species with the 

smallest spectral difference within-species, but now it is the 

second one. Now, Helietta apiculata and Pterodon pubescens 

presented the higher differences with average spectral distances 

of 0.0041 and 0.0046, respectively. 

 

Comparing the results from Figure 2 and Figure 3 with Figure 4 

it is noticed that the difference within-species in some cases are 

higher than the difference between-species as for Helietta 

apiculata. In this example, the difference within-Helietta 

apiculata samples was 0.0268 when using the non-normalized 

reflectance factor spectra. Pairwise combinations of Helietta 

apiculata with the other tree species, with exception of Pterodon 

pubescens and Aspidosperma polyneuron, presented smaller 

differences than its within spectra, i.e., lower than 0.0268. 

Similar analysis is observed for Syagrus romanzoffiana, where 

the variability among the samples of its species is only lower than 

the difference of Syagrus romanzoffiana with Pterodon 

pubescens, Astronium graveolens and Copaifera langsdorffii. 

 

From the experiments performed, it can be noticed that the high 

spectral variability within-tree species can be a challenge to 

classify the tree species. Possible reasons for these results are 

related with the different development stages of the study area, 

since the tree reflectance spectra change according to its age, 

development stage and environment (Buddenbaum et al. 2005). 

 

Despite of the use of leaves from trees belonging to the Amazon 

forest in different ages, Chavana-Bryant et al. (2017) found out 

that the leaves’ spectra were different, supporting our hypothesis 

about the within-species variability. Castro-Esau et al. (2006) and 

Ferreira et al. (2013) also evaluated leaves spectra, being 

observed similar results with our findings, i.e., there is a higher 

variability between species than within-species. In regard to our 

study area, it is noted that deciduous trees commonly have an 

irregular crown shape, which makes the reflectance pattern of 

tree species more difficult to be recognized (Ke and Quackebush, 

2011). Moreover, lower trees can have their spectra affected by 

neighbourhood trees as well as the density of sunlit and shadowed 

pixels. 

 

Finally, considering just the hypothesis tests, it is noticed 

confusion among the observations however, the mean 

normalized spectra present lower confusion, being recommend to 

be used in classification purposes. Nevalainen et al (2017) and 

Dalponte et al. (2019) successfully showed the use of normalized 

spectral features to tree species classification of Finnish forest 

and of United States of America forest, which characteristics 

differ from the Brazilian Atlantic forest. 

 

 

4. CONCLUSIONS 

The objective of this study was to evaluate the spectral 

separability between-species and within-trees belonging to the 

same class using the mean reflectance factor spectra and the mean 

normalize spectra obtained from hyperspectral imagery acquired 

with sensor onboard UAV. Hyperspectral images were acquired 

over highly diverse Brazilian Atlantic forest and after the 

geometric and radiometric processing, the mean values of 

manually delimited polygons were obtained and compared. 

 

Even most part of the features showed to be statistically similar, 

the hypothesis test results showed that a higher number of null 

hypothesis were rejecting when using the normalized values. In 

this sense, the use of this type of feature is highly recommended 

to tree species classification. 
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