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ABSTRACT: 

 

This work aims to determinate the relationship between C-band SAR backscattering measurements over Amazonian tropical forests 

and hourly precipitation rates, and to study the feasibility of a SAR-anomaly masking method based on orbital rain measurements. To 

do so, a comprehensive dataset of ESA’s Sentinel-1 backscattering data and the concomitant GPM-IMERG precipitation data was 

collected and analysed. Backscattering anomalies were characterized in a statistically meaningful way. GAM models were then 

adjusted to the backscatter-rain data pairs. The computed models show a positive correlation between non-anomalous backscattering 

values and accumulated rain, of approximately 0,2 dB/mm·h-1 and 0,4 dB/mm·h-1 for VV and VH polarizations. Negative anomalies, 

which can easily mislead deforestation algorithms, have a strong negative correlation with rain rate observed at the time of the SAR 

acquisition. This is especially true for VV measurements. The subsequent anomaly masking procedure, based on computed 

accumulated and hourly rain thresholding, yielded unsatisfactory results. These poor results are probably due to the coarse resolution 

of the 0.1° GPM-IMERG data, which is insufficient to track anomaly-generating atmospheric events such as storm rain cells.  Rain-

related changes in SAR backscattering can compromise deforestation detection algorithms, and further research and sensor developing 

is needed to increase spatial resolution of precipitation measures, to reach an optimal backscattering anomaly screening. 

 

1. INTRODUCTION 

Early deforestation detection in tropical forests has become a 

priority for governments and civil society organizations 

throughout the world. In this context, Early Warning Systems 

(EWS), which are defined as a collection of algorithms and 

procedures able to identify tree loss or disturbance, on a periodic 

(monthly, weekly or even daily) basis (Petersen, Renschler, and 

Weisse, 2018), become a key aspect of deforestation reduction 

initiatives. EWS has been a crucial element to reinforce public 

policies that have led to significative deforestation rates decrease 

in Brazil (Soares-Filho et al., 2010; Assunção, Gandour, and 

Rocha, 2013; Nepstad et al., 2014) and Peru (Finer et al., 2018).  

Nevertheless, cloud cover constitutes a serious obstacle to EWS 

based exclusively on optical data in tropical forest environments. 

A recent survey among users pointed to cloud cover as the most 

important effectiveness limiting factor to the actual EWS (Weisse 

et al., 2019). Hansen et al. (2016), reports 80% cloud cover 

during the wet season on Peru Landsat-7/8 data. In Brazil, 

frequent observations over Amazonian basin are seriously 

affected, as mean annual cloud cover on the Brazilian part of the 

biome is approximately 74%. 

Orbital active microwave sensors, namely Synthetic Aperture 

Radar (SAR) satellites can help bridging this observational gap. 

SAR observations aren’t blocked (though it can be affected) by 

atmospheric effects (Reiche et al., 2016), and have greatly raised 

its availability after the launch of Sentinel-1A and B C-band SAR 

satellites. Some factors have limited the widespread adoption of 

SAR data in EWS. Among them we can cite: 

1. Separability of classes: SAR researchers have struggled to 

distinguish different stages of forest succession, being the 

results normally inferior to the optical inferred 

classifications (Almeida-Filho et al., 2005; Mercier et al., 

2019) 

2. The ambiguity of the SAR signal change after a disturbance 

episode: although most of the time deforestation causes a 

drop on backscattering, some conditions can lead to an 

increase after a forest disturbance event (Almeida-Filho et 

al., 2005; Shimabukuro et al., 2007; Whittle et al., 2012; 

Watanabe et al., 2017). 

3. Atmospheric factors affecting measurements: ionospheric 

and tropospheric effects can modify and even make 

unusable SAR data. Mitigation of these effects is somewhat 

complex and sometimes unfeasible (Kasilingam et al., 1997; 

Davies and Smith, 2002; Marzano, Mori and Weinman, 

2010). 

4. Rain interception on the vegetation and soil moisture affect, 

sometimes intensely, backscattering values. The scarcity of 

rain gauges and moisture measurements makes mitigation 

of these effects challenging on operational contexts (De 

Jong, Klaassen, and Ballast, 2000; Cisneros Vaca and Van 

Der Tol, 2018; Benninga, 2019). 

It is worth noting that, while atmospheric interference will 

normally attenuate C-band backscattering, rain interception may 

slightly increase SAR signal. Those effects can co-exist and even 

superpose over the same location.  

More importantly, rain attenuation can mislead a potential 

automatic deforestation detection algorithm, thus increasing its 

false-positive rates. 

This works aims to explore a comprehensive time-series SAR 

dataset to determine the potential relationship between 

backscattering and precipitation. For that purpose, Sentinel-1 

SAR data were combined with hourly precipitation data coming 

from NASA’s Integrated Multi-satellitE Retrievals for GPM 

(IMERG). Our objective was to determine the existence an 

optimal threshold able to mask most of the rain-related anomalies 

while preserving SAR information. 

 

2. MATERIALS 

2.1 Area of interest 

The study sampled 993 locations in the Amazonia biome (Figure 

1). The locations were randomly selected from the intact forest 

landscapes (IFL) 2016 dataset (Potapov et al., 2017). Before 
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sampling, an internal buffer of 5 km was applied to the IFL 

polygons to avoid border effects. 

 

 
Figure 1: Map of sampled locations. 

 

2.2 SAR data 

For every sampled location, we collected Sentinel-1A/1B VH 

and VV backscattering values from 01/01/2017 to 01/01/2019 

using Google Earth Engine platform (GEE, Gorelick et al. 2017). 

Pixel samples were denoised using a 7x7 Frost speckle filtering 

(Frost et al., 1982) and converted to 𝛾0 values using local 

incidence angle, which should be enough to control 

backscattering variations on low-to-medium slope areas (Small, 

2011). To maximize the homogeneity of the sampling locations, 

we excluded the locations where the mean backscatter value was 

outside the (P10, P90) percentile interval defined by the ensemble 

of locations backscattering means, for both polarities.  This 

trimming reduced to 729 the number of forest locations 

considered for the study, which represents a total number of 

52,611 backscattering observations through the entire two-years 

timespan and 9,044 different Sentinel-1 scenes. Table 1 

summarizes the properties of the retained time-series. 

 

Polarization Mean 
Standard 

Deviation 

Coefficient of 

Variation 

VH 0.057 0.0016 2.82 

VV 0.231 0.0089 3.87 

Table 1: Statistical values for sampled 𝛾0 time series. 

 

2.3 Precipitation data 

Along with backscattering, precipitation data were collected. The 

selected precipitation dataset was NASA’s Integrated Multi-

satellitE Retrievals for GPM (IMERG), on his version 06 

(Huffman et al., 2019). IMERG delivers global calibrated 

precipitation data on 0.1° (roughly 10x10 km) resolution, with a 

cadence of 30 minutes. For this study we computed the hourly 

mean calibrated precipitation rate (in mm/hr) for every 

backscattering sample, starting 12 hours before the time of SAR 

acquisition until 3 hours after. Other available precipitation 

datasets, such as CHIRPS (Funk et al., 2015), weren’t taken into 

account due to the insufficient temporal resolution. 

 

3. METHODOLOGY AND RESULTS 

3.1 Identification of SAR anomalies 

To determine which SAR observations could be considered as 

being anomalous on a consistent way, we modeled the 

distribution of 𝛾𝑉𝐻
0  and 𝛾𝑉𝑉

0 values assuming them to follow a 

Gamma distribution (eq. 1).  

𝑓(𝑥; 𝛼, 𝛽) =
𝛽𝛼𝑥𝛼−1𝑒−𝛽𝑥

(𝛼 − 1)!
 (1) 

Although all sampled locations are supposed to correspond to 

homogeneous forested areas, heterogeneities in the upper canopy 

structure can lead to variations on 𝛾0 values, especially in VV 

values (see Figure 2). To evaluate the effect of these 

heterogeneities, we adopted an modeling approach where a 

different Gamma distribution was fitted for every location 

backscattering time-series. 

 
Figure 2: Mean 𝛾0 for sampled points density distribution. 

 

Based on the obtained Gamma distribution parameters, and using 

a significance value of 1%, we defined the maximum and 

minimum thresholds which will define anomalous 

𝛾0observations. 1% significance value was adopted to keep 

results consistent with authors’ on-going research on 

deforestation detection. 

 

Polarization Shape (α) Rate (β) Tmin Tmax 

VH 191 3297 0.482 0.0681 

VV 199 857 0.194 0.270 

Table 2: Median parameters of the modelled gamma distribution 

parameters, and corresponding anomalies thresholds (𝛼 = 0.01). 

 

Based on the obtained thresholds, every backscattering 

observation was classified as normal observation, negative 

anomaly (when γ0<Tmin) or positive anomaly (when γ0>Tmax). 

Table 3 summarizes the number of observations flagged as 

anomalous. 

 

Pol. 
Anomaly type Anomaly type (%) 

Negative Positive Negative Positive 

VH 455 486 0.86 0.92 

VV 466 537 0.89 1.02 

Table 3: Absolute and relative number of anomalous 

observations. 

 

3.2 Analysis of backscattering response to precipitation 

Using R package (R Core Team, 2013), we adjusted a set of 

generalized additive models (GAM) to the ensemble of 𝛾0 

backscattering observations, using the accumulated rain as the 

independent variable. To get a detailed insight into the evolution 

of the backscattering as a function of the time of precipitation, we 

computed and plotted a model taking into account the 

accumulated rain for every hour interval before radar acquisition. 

Figure 3 shows the results of the GAM modeling for VH and VV 

polarizations. Additionally, we plotted and modeled the 

computed hourly precipitation rate versus backscattering values 

(Figure 4). These hourly charts will help establishing the 

potential time span of influence of rain over SAR acquisitions. 

 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W12-2020, 2020 
2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS 2020), 22–26 March 2020, Santiago, Chile

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-493-2020 | © Authors 2020. CC BY 4.0 License. 

Primary publication at IEEE Xplore: https://doi.org/10.1109/LAGIRS48042.2020.9165566

 
 

494



 

 
Figure 3: VV and VH γ0  values vs. accumulated rainfall. Ac[i] 

refers to the accumulated rain [i] hours before the acquisition of 

the SAR data. Continuous lines are GAM models. Grey shades 

represent model 95% confidence interval. 

 
Figure 4: VV and VH γ0 values vs. hourly rainfall rate. P-[i] refers 

to the rain rate [i] hours before the acquisition of the SAR data. 

p01 refers to rain one hour after. Continuous lines are GAM 

models. Grey shades represent model 95% confidence interval. 
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3.3 Backscattering masking as a function of accumulated 

and hourly precipitation 

After checking the relationship between rainfall rate and 

backscattering values, we studied the feasibility of a rain-

dependent masking strategy for radar data. This approach has 

been tested in soil moisture determination algorithms by 

Benninga, van der Velde, and Su (2019). In our case, by filtering 

backscattering observations based on rainfall we intend to reduce 

the number of anomalous values, and thus, to improve the results 

of a hypothetical deforestation detection algorithm. 

To test this approach, we implemented an iterative algorithm that 

rejected all backscattering observations related to a specific rain 

quantity accumulated after a specific number of hours before the 

acquisition. After this filtering, we recount anomalies, to see if 

the number and proportion of negative and positives anomalies 

decreased, as we will expect. 

The results of this screening procedure are shown in Figure 5 and 

Figure 6 in terms of % of anomalies and total observations 

reduction: 

 

 
Figure 5: Results of SAR observation masking based on 

accumulated rain. Every chart corresponds to the number of 

hours before SAR acquisition that are being considered for 

precipitation summation. Thresholds are represented in the 

horizontal axis, while the vertical axis represents the percentage 

of total and anomalous observations that were preserved after 

masking. 

  

 
Figure 6: Results of SAR observation masking based on hourly 

rain rate. Every chart corresponds to the number of hours before 

SAR acquisition that are being considered for precipitation rate 

computation. Thresholds are represented in the horizontal axis, 

while the vertical axis represents the percentage of total and 

anomalous observations that were preserved after masking. 

 

4. DISCUSSION 

The charts and models plotted on figures 3 and 4 allows one to 

accomplish a thoughtful analysis of the relationship between 

rainfall and backscattering in a tropical environment. Regarding 

normal values, an increase in accumulated precipitation seem to 

slightly increase C-band SAR backscattering due to the 

temporary increase in the wetness of the upper canopy. This 

results is consistent with previous research (De Jong, Klaassen 

and Ballast, 2000; Benninga, van der Velde, and Su, 2019). We 

can quantify this increase in an approximate rate of 0,4 and 0,2 

dB/mm·h-1, for VH and VV polarization respectively. As 

saturation levels are reached quickly (around 1 mm·h-1), total 

increase in backscattering due to precipitation will rarely reach 

0,5 dB. Cisneros Vaca and Van Der Tol (2018) report higher 

anomalies (+1.5 dB on VH polarization) over temperate forests. 

Regarding detected positive anomalies the models plotted on 

figures 3 and 4 don’t show a significant correlation of γ0 values 

with accumulated rain or with the rain rate during the acquisition 

or before it. That probably means that, although rain can raise 

backscattering by wetting canopy scatterers, this effect is not 

strong enough to raise backscattering measures above the 99% 

anomaly threshold. Hence, most of the detected positive 

anomalies should be provoked by other phenomena, such as 

uncontrolled speckle noise, man-made structures, or (most 

probably) terrain slope. 
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On the other side, γ0 negative anomalies, which can become an 

important source of error on deforestation detection algorithms, 

seem to suffer a strong influence from rain patterns, as shown by 

figures 3 and 4 (green lines). This attenuation seems to impact 

VH backscattering when the instantaneous rain rate at the 

moment of the acquisition reach more than 1 mm/h (Figure 4, p00 

and p01 panels). Strong decrease effects due to rain between 4 

and 10 hours seem to be spurious (Figure 4, p-10 to p-3 panels), 

and should be investigated. VV data seem to suffer attenuation 

(much stronger than VH) starting at 0,8-1 mm/h.), which would 

peak around 5 mm of accumulated rain and then will saturate and 

decrease (Figure 3). 

As exposed by Danklmayer et al. (2009), this substantial 

attenuation in backscattering is probably due to the strong 

absorption of electromagnetic energy as it passes through dense 

tropical rain cells. A recent example of that kind of phenomenon 

is shown in Figure 7, which depicts the impact of the passage of 

a super-storm cell on S1 γ0 values. Point P1 registered a fall of 6 

dB on both S1 polarizations on 5Th August 2019 acquisition, 

which can be visualized as a purple stain on a multitemporal 

mosaic. An exceptionally thick storm cloud was registered by 

Sentinel-5p satellite the same day on P2, some 15 km eastward 

(yellow cell). The optical thickness of the storm was greater than 

the saturation value of the S5p sensor (250 m). IMEGR data 

examination indicates that probably the same storm cell passed 

above the γ0 anomaly area exactly at the moment of S1 

acquisition.  

Regarding backscattering masking based on accumulated and 

hourly precipitation, the results, shown by figures 5 and 6, 

weren’t completely satisfactory. Although some anomalies tend 

to decrease when applying rain thresholds based in accumulated 

hourly rain (figure 5), the total number of observations will 

decrease jointly. For instance, in we mask all observations 

associated with a 10-hour accumulated rain of more than 5mm, 

we will retain 80% of the total observations, 65% of VH negative 

anomalies, 80% of VV negative anomalies, 93% of VH positive 

anomalies and 87% of positive VV anomalies. Higher thresholds 

will decrease even more the number of non-masked observations. 

We consider this 20% decrease in the total number of 

observations excessive on the context of an EWS and won’t 

worth the 7-35% reduction on observed anomalies.  

The scale difference between the size of the atmospheric events 

that are supposed to be behind backscattering anomalies 

(kilometric, after Iwashita and Kobayashi, 2019) and the 10x10  

km resolution precipitation data is a key factor on the lack of 

performance of the applied thresholding technique. Even if GPM 

hourly precipitation data might detect heavy-rain events, most of 

the S1 pixels inside an anomalous GPM cell wouldn’t be affected 

by the event and thus will be incorrectly masked. 

 

 
Figure 7: Sentinel-1 backscatter decay linked to super-storm 

cells in Roraima state (Brazil). The approximate size of the 

super-cell (in yellow) is 5x5 km. 

5. CONCLUSIONS 

In this study, we have considered a regional SAR and rainfall 

dataset to test the sensibility of SAR backscattering to short-term 

dense precipitation events. Our results confirmed that normal 

backscattering values suffer a minor increase (0,2-0,4 dB/mm·h-

1) due to rain accumulated on the canopy on the hours before the 

SAR acquisition. In this case, Saturation levels are quickly 

reached. Abnormal high values (above percentile 99) are not 

significantly influenced by rain and may be mostly caused by 

other factors such as terrain slope. On the other hand, negative 

backscattering anomalies showed a strong relationship with 

rainfall, especially co-polarized (VV) backscattering values 

related to high rain rates recorded during the acquisition. This is 

probably due to dense rain-cell cloud attenuation.  

Attempts to filter out backscattering anomalies by using 

precipitation-based thresholds weren’t completely satisfying, as 

filtering masks out valid observations. This is probably due to the 

difference in the size of the rainfall data pixel and the size of the 

atmospheric events that provoke backscattering anomalies. 

Indeed, it has been verified that spatially coarse precipitation data 

provokes a great deal of incertitude in anomaly masking. Inside 

an IMEGR cell, a variety of atmospheric situations can happen 

simultaneously. More accurate results will need higher spatial 

resolution, such as that given by meteorological radars. A good 

example of the advantages of this kind of data can be found in 

Atlas, Rosenfeld, and Wolff (1993). Even if the results of our 

study should be considered with precaution, they constitute an 

operational guideline for deforestation detection algorithms 

optimization, taking in account that accurate screening of 

attenuation-affected backscattering observations will require 

higher resolution (at least 2x2 km) cloud density and/or rain rate 

information, with at least hourly resolution. 
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