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ABSTRACT:

Synthetic aperture radar (SAR) image processing and analysis rely on statistical modeling and parameter estimation of the probabil-
ity density functions that characterize data. The method of log-cumulants (MoLC) is a reliable alternative for parameter estimation
of SAR data models and image processing. However, numerical methods are usually applied to estimate parameters using MoLC,
and it may lead to a high computational cost. Thus, MoLC may be unsuitable for real-time SAR imagery applications such as
change detection and marine search and rescue, for example. Our paper introduces a fast approach to overcome this limitation of
MoLC, focusing on parameter estimation of single-channel SAR data modeled by the GY distribution. Experiments with simulated
and real SAR data demonstrate that our approach performs faster than MoLC, while the precision of the estimation is comparable
with that of the original MoLC. We tested the fast approach with multitemporal data and applied the arithmetic-geometric distance
to real SAR images for change detection on the ocean. The experiments showed that the fast MoLC outperformed the original

estimation method with regard to the computational time.

1. INTRODUCTION

The processing and analysis of synthetic aperture radar (SAR)
images are relevant for several remote sensing applications such
as the monitoring of natural features and change detection on
the Earth under certain weather conditions (Lopez-Martinez,
Fabreagas, 2003),among other applications. Appropriate stat-
istical modeling that can accurately describe synthetic aperture
radar (SAR) data plays a central role in the interpretation of
SAR images (Frery et al., 1997). SAR image processing al-
gorithms that rely on statistical models usually require para-
meter estimation. The method of log-cumulants (MoLC) is ap-
propriate for parameter estimation of probability density func-
tions that describe SAR data (Bujor et al., 2004), and it is well
suited to a wide range of image processing algorithms and SAR
applications (Bujor et al., 2004), (Krylov et al., 2013), (Rodrig-
ues et al., 2016).

The probability density function named GY distribution (Frery
etal., 1997) characterizes intensity SAR images and it is defined
over RT. According to (Krylov et al., 2013), the use of the Mel-
lin transform makes it possible to perform a more effective ana-
lysis of practically important distributions defined in R™. Thus,
MOoLC is a suitable option for parameter estimation of the G
distribution. MoLC has previously been applied to SAR im-
ages, and especially to small samples, which pose a critical is-
sue in many applications (Krylov et al., 2013). Algorithms for
SAR image processing (Rodrigues et al., 2016), classification
(Singh, Datcu, 2013) and change detection with multitemporal
SAR images (Bujor et al., 2004) have successfully used para-
meters of probability density functions estimated by MoLC as

inputs. However, the parameter estimation of the G? distribu-
tion using MoLC adopts numerical solution procedures which
usually lead to higher computational cost.

Based on the definitions of the polygamma functions and gamma
function (Arfken, Weber, 2005), we introduce an analytical for-
mulation to lessen the computational time of the log-cumulants
method to estimate the roughness and scale parameters of the
GY distribution. These estimates can be inputs to algorithms
for intensity SAR images processing and classification.

Based on the definitions of the polygamma functions and gamma
function (Arfken, Weber, 2005), our proposed fast formulation
for MoLC considerably speeds up the parameter estimation of
the G distribution. To evaluate the performance of the fast
formulation, we performed experiments on synthetic and real
SAR data to compare it with the original MoLC in terms of the
computational time and estimation accuracy.

2. MATERIALS AND METHODS
2.1 The log-cumulants method

Let Z be a continuous random variable with the probability
density function fz (2, 0) defined over R™, where  can be either
a real-valued parameter or a vector. The derivation of MoLC
applies the Mellin transform to fz(z, 8), which yields:

b2(s) = / T edz= B2, )
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where E[Z°7!] is the moment of order s — 1 of the random
variable Z.

The log-moment and log-cumulant of order v are two import-
ant relations used to formulate MoLC. To obtain the analytical
expressions of the log-moment and log-cumulant of order v, we
differentiate ¢z (s) and evaluate it at s = 1. The log-moment
of order v is given by (Nicolas, 2002):

T’;’ll — dv¢z(8)

= ,veN". ©)

s=1

Based on the natural logarithm of ¢z(s), the log-cumulant of
order v is expressed by (Nicolas, 2002):

= d*v=(s)

=2 ven, 3)

s=1

with ¢ (s) = In((¢=(s))-

The strategy used in MoLC to estimate 6 is based on the re-
lation between the log-moments and log-cumulants. The log-
cumulants can be obtained from the log-moments using the re-
lation:

klzﬁll

4
ko =y — Y ( 2’:11 )Em, ve{2,3.}

Thus, for example, the log-cumulants and log-moments of order
1 and 2 are related by:

k1 = i
®)

7 ~ ~2
kz =ma2 — Mj.

Estimation of the parameter vector € is generally achieved by
replacing m,, by the corresponding sample log-moment, which
is given by (Nicolas, 2002):

= 1 <
v = 1 ;'U7 6
m n;nz 6)

with z;, ¢ € {1,2,...,n}, being a sample of a random variable
Z.

2.2 The log-cumulants method for the G distribution

The GY continuous distribution, with parameter vector § =
(a,, L) 7, is characterized by the probability density function
(Frery et al., 1997):

LET(L — )

L—1 a—L
’YO‘F(*O[)F(L)Z (v+ Lz) ) @)

fG?(ZaG) =

where z > 0, o < 0 stands for the roughness parameter, v > 0
is the scale parameter, L > 1 is the number of looks and I'(.)

corresponds to the gamma function. The rth-order moment for
the G? distribution is defined as follows:

(Y T(—a—7)I(L+7)
Egyl2'] = (Z) T—a)l(L) ®

with o < —7.

For the probability density function in Equation (7), the Mellin
transform ¢ (s) can be obtained using Equations (1) and (8),
giving rise to the Mellin transform for the GY distribution:

NIl —s—a)l'(L+5—-1)
boy() = (1) T(—a)T(L) ©)

In this paper, for the sake of simplicity, the number of looks L
is assumed to be known. Thus, we obtain the log-cumulants of
order 1 and 2 for the GY distribution using Equation (3):

ko = UN(L) 4+ U (—a), (10)

where ¥°(.) and ¥'(.) are the digamma and trigamma func-
tions (Arfken, Weber, 2005), respectively.

To estimate the parameter vector 8* = (a,v) ", we apply Equa-
tions (5) and (10) and replace m1 and m by the corresponding
sample log-moments in Equation (6).

Given that there are no feasible inverse functions for ¥°(.) and
(), the non-linear system in Equation (10) cannot be solved
explicitly and therefore it requires iterative procedures. Over-
all, these procedures are computationally slow, and hence a key
challenge is to reduce this computational cost.

2.3 Fast approach for log-cumulants method

This section introduces our fast approach to the method of log-

cumulants (FAMoLC) to estimate the vector of parameters, (o, ) ',

of the GY distribution. To solve the non-linear system in Equa-
tion (10), we use the definition of the polygamma function (Ar-
fken, Weber, 2005):

_ " 'In(C(w))

wrw) = S,

at)

where n € N* and w > 0. The gamma function I'(w) in Equa-
tion (11) can be defined as (Arfken, Weber, 2005):

1

F = w
O e T, () e E

(12)

where 7 is the Euler-Macheroni constant. Using Equation (12),
In(T"(w)) in Equation (11) can be rewritten as:

w

(T (w)) = —In(w) — 7w — i [m (1 + %) - E] . (13)
k=1
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According to Equation (11), ¥ (—a) in the non-linear system
of Equation (10) is given by:

_ ’In((~a))

Vo) = = g=ay

(14)

To achieve the partial derivatives of U'(—cq) in Equation (14)
and considering that In(T'(—«)) can be rewritten using Equation
(13), we compute ¥' (—a) as:

U (—a) = (_2)2 +y G —la)2' (15)

0o
k=1

Denoting the infinite sum in Equation (15) by &£(«) and consid-
ering that (—a)? = o2, we have:

U (—a) = 1 + £(a). (16)

o?

Our assumption is that (&—12) in Equation (16) is an approxima-
tion of ¥!(—a):
Ul(—a)~ —. a7

Here, we employ the approximation in Equation (17) to rewrite
Equation (10) and then estimate the roughness parameter with
the following analytic expression:

— -1
ko—W1(L)
_1/m77;f k2—\1’1(L)>07

where |.| stands for the modulus operator and the first expres-

sion of Equation (18), ﬁl@)’ yields a complex-valued
A/ Fae

result.

Jif ke — UML) <0

(18)
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I

The proposed approach for the roughness parameter estimation
is restricted by the condition ' (L) — ks = 0, where there is
no estimate. After obtaining &, we estimate the scale parameter
by placing @ in the first term of Equation (10). Then, ~ can be
estimated by:

4 = exp [El L) + \po(—a)} L. (19)

Notice that we obtain the analytical expressions in Equations
(18) and (19) because we discarded the term £(«) in Equation
(16). Nevertheless, it is important to evaluate the magnitude of
this term to compute ¥*(—a). Using Equation (16), the term
&() can be rewritten as:

—, a < 0. (20)

The o parameter in the GY distribution is related to the rough-
ness of a target. In (Gambini et al., 2015), the authors reported
that v values close to zero (typically above -3) suggest extreme
textured targets, regions with moderate texture usually produce
a € [—6, —3] and textureless targets a € (—00, —6).

Fig. 1 illustrates that the magnitude of £(«) decreases with the
increase of |«|. Therefore, the proposed method provides better
results in textureless targets, e.g. oil slicks on the ocean.

1.2

0.8
I

&(a)

04

0.0
I
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Figure 1. Approximation error.

3. RESULTS AND DISCUSSSIONS

To evaluate and compare the accuracy of the FAMoLC and
MoLC, we performed a Monte Carlo experiment and computed
the Mean-Square Error (MSE) for both parameter estimation
methods. We also carried out experiments on multitemporal
real SAR images to confirm the suitability of the fast approach
for change detection on the ocean. Actually, the computational
cost is a key point of surveillance systems. The experiments run
on a 1.8 GHz CPU with 8§ GB of RAM.

3.1 Experiments with simulated data

The simulation of SAR data was based on the relation between
intensity and amplitude data, in which Z; = Z3, as reported in
(Frery et al., 1997) and (Lee, Pottier, 2009). Random samples
of the random variable Z; following the G? distribution can be
obtained using the expression

Zr = —%T;L{,Qa(U). @21

Here, T, Ll’_za stands for the inverse distribution function of
F—Snedecor with 2L and —2« degrees of freedom, and U a
random variable with uniform distribution over (0, 1).

We assume distinct roughness parameter values o €
{-1.5,—3.0, —5.0}, number of looks L € {1, 5, 8} and without
any loss of generality, we set the scale parameter (vy) such that
EG? [Z1]) = 1,i.e.,v = —a — 1. Table 1 summarizes the scen-
arios used in the experiments with simulated data.

Table 1. The distinct scenarios for synthetic data simulation.

Scenario 1 2 3 4 5 6 7 8 9
@ -1.5 -1.5 -1.5 -3.0 -30 -3.0 -50 -5.0 -5.0
o1 05 0.5 0.5 2 2 2 4 4 4
L 1 5 8 1 5 8 1 5 8

We performed Monte Carlo experiments under different scen-
arios, where each one employed different sample sizes, i.e.,
n € {9,25,49,81,121}. For each sample size, we performed
1.000 replicates per simulation yielding 45000 tests. The scale
and roughness parameters of the synthetic data modeled by the

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-499-2020 | © Authors 2020. CC BY 4.0 License.
Primary publication at IEEE Xplore: https://doi.org/10.1109/LAGIRS48042.2020.9165661 501



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W12-2020, 2020
2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS 2020), 22-26 March 2020, Santiago, Chile

y S 3
b . 3 S
- Q o o
° 3 ° o g
e p 4 0 [}
Eln p ° 28 s 2
o ° g o
ol|#---g---p---p---0f CQlF---B---0---0---0 Q¥ ----0---t---0| Olg__ 4. _ . g--—p--2 85"-0———w———m---n 8'--—0—-—»----»———--:
°% % & @8 1@ °§ & 4 8 @1 °§ 25 4 8 1 °§ 25 49 8 11 °§ & 4 § 1 ©8§ H 4 g 12

Sanplesz2

(a) Scenario 1

Sampesze

(b) Scenario 2

Sample sze

(¢) Scenario 3

Sample size

(a) Scenario 1

Sampe size

(b) Scenario 2

Sample size

(c) Scenario 3

e

B---B---0---0----0

MSE
2

B-N\-8---0---0---0

BN\--B---0---0---0

TN

B---G---0---0----0

20

o 5 10

9 B H 8 12

Sanple size

(d) Scenario 4

9 B H 8 12

Sample size:

(e) Scenario 5

§ B N @ 1@

Sample sze

(f) Scenario 6

9 5 H & 12

Sample sze.

(d) Scenario 4

9 5 H & 12

Sample size:

(e) Scenario 5

9 B H 8 12

Sanple size

(f) Scenario 6

e ---F---0---0 F---6---0---0---0 G---G---0---0---0
o o o
- - - 0 B\o_"\_e o
«
K Ofo—o o o0 Wio— o o2 ,Olo---p---r---0---0
: 2 Ole---Bg--0---0----0
<+ < < [}
©
° T v ° T v ° ° T ° T ° T v
9 B H g 1R 9 B H g 1R [] B H 8 1R 9 B H R 9 B H R 9 B O g 1R
Sampl sze Sampl sze Sanglesze Sample sze Sampl sze Sampl sze

(g) Scenario 7 (h) Scenario 8 (i) Scenario 9

Figure 2. Mean-square error of the roughness parameter («)
estimates. The solid line refers to FMoLC and the dot line to
MoLC.

G were estimated using FAMoLC and MoLC. Fig. 2 and Fig.
3 illustrate the performance of both FAMoLC and MoLC, in
terms of MSE, for estimates of « and ~.

The results indicated that FAMoLC was more sensitive to sample
size than MoLC. On the other hand, the MSE of the roughness
estimates produced by FAMoLC was lower than MoLC for the
scenarios with the highest values of |a|. The MSE of the es-
timates obtained by MoLC remained stable, regardless of the
increase of the sample size.

Table 2 presents the average estimation time in seconds for all
experiments with the whole scenarios. It shows that FAMoLC
performed remarkably faster than MoLC for parameter estima-
tion using synthetic data.

Table 2. The average computation time for parameter estimation
using the whole scenarios.

FMoLC
6.05

MLC
94.34

Despite the sensitivity of FAMoLC to the sample size, both es-
timation methods achieved similar MSE values. Concerning the
computational time, FAMoLC decreased markedly in the tests
with synthetic SAR data. Here, the experiments confirmed that
the fast approach provides a reliable estimation of the rough-
ness and scale parameters of the G¢ distribution, and that the
fast MoLC can be used in statistical SAR image processing.

3.2 Experiments with real SAR images and applications

To evaluate the computational time of FAMoLC and MoLC in
real SAR image processing, we designed an experiment where

(g) Scenario 7 (h) Scenario 8 (i) Scenario 9

Figure 3. Mean-Square Error of the scale parameter ()
estimates. The solid line refers to FMoLC and the dot line to
MoLC.

the roughness and scale parameters of the G} distribution were
estimated by using these estimation methods. Inspired by (Me-
jail et al., 2003), we estimated the parameters for each image
pixel by applying a sliding window of 5x5 pixels and using both
estimation methods on real SAR images. Fig. 4 presents mul-
titemporal intensity SAR images acquired by ALOS/PALSAR
(L-band, 1 look and HH channel) over the Campos Basin on the
Southern Brazilian coast, via two consecutive acquisitions.

(2)

(b)

Figure 4. Multitemporal intensity SAR images acquired by
ALOS/PALSAR over the Campos Basin in the Brazilian coast
with HH polarization, single look, size 400x400. (a) The first

acquisition in 05/22/2010 and (b) the second in 08/22/2010.

Table 3 displays the overall computational time to estimate the
roughness and scale parameters for each pixel of a real SAR
image of size 400x400, as displayed in Fig.4, using both es-
timation methods. Our approach performed significantly faster
than MoLC and hence it is capable of providing reliable inputs
(e.g. estimated parameters) for SAR image segmentation, clas-
sification and change detection algorithms.
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Table 3. Computational time for parameter estimation for both
methods, in seconds, applied to the real images in Fig. 4

FAMoLC
3.76

MoLC
1723.50

We also performed an experiment to measure SAR image con-
trast and evaluate the performance of both MoLC and FAMLoC
in terms of the similarity of the estimates. This experiment was
inspired by (Frery et al., 2010) and (Nascimento et al., 2010), in
which stochastic distances are applied to SAR data that follows
the G distribution model. In the proposed analysis, a grid of
resolution 40 x 40 pixels is used, totaling 100 samples (B;) per
image (from top-left B; to right-down Bigo), as illustrated in
Fig.5. The contrast matrices (C),) are obtained by computing
the Arithmetic-Geometric distance (Sag), as follows:

with 4, j = 1...100.

Sac (@i ¥i); (45,73)), 22)

(a)

Figure 5. Grid used to compute the contrast matrices of the SAR
images in Fig.4(a) and Fig.4(b).

Regardless of the estimation method for o and +, the contrast
matrices present similar results. Temporal variations in the scenes
are identified by the distinct magnitudes presented in Table 4.

Table 4. Maximal values of the contrast matrices.

Fig. 5(a) Fig. 5(b)
MoLC 9.858e-01 6.627e+01
FAMoLC 8.262e+01 3.175e+03

4. CONCLUSIONS

This paper introduces a fast log-cumulant method that delivers
accurate estimates for the roughness and scale parameters of
the G? distribution. Our tests with synthetic SAR data showed
that FMoLC performed faster than MoL.C, because it did not in-
volve iterative procedures. To test the feasibility of our method
in environmental remote sensing applications, we carried out
experiments on real multitemporal SAR images of the Campos
Basin in Brazil to detect changes on the ocean. The encouraging
results from the fast MoLC confirmed that it is computationally
suitable to support SAR image processing of large areas and en-
vironmental surveillance tasks related to oil spill disasters, for
example.
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