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ABSTRACT:  

 
Nowadays some aerial surveying projects (both manned or not) might integrate imagery and ranging sensor technology, thus allowing 
both the reconstruction of the surface from airborne laser scanning (ALS) and from the Photogrammetric pipeline through digital image 
matching (DIM). DIM algorithms have been continuously improved, therefore comparisons to other techniques such as ALS must be 
conducted. Despite the scientific community efforts, there are few evaluations regarding the extraction of building roofs using point 

clouds derived from both ALS and imagery. In this sense, this study provides a brief comparison between ALS and DIM point clouds 
and the accuracy that can be achieved in surface reconstruction and building roofs extraction. The experiments indicated that in some 
situations such as the building roof shape extraction, the accuracy is similar between these techniques, however, this is not valid for 
vertical accuracy, where larger differences were observed.   
 
 

1. INTRODUCTION 

In the past few decades, there have been an adoption trend of 
airborne surveying with integrated sensors such as digital aerial 
imagery and airborne laser scanning (ALS), for instance. 
According to Remondino et al. (2013) the main reason to adopt 
ALS systems over Photogrammetry during the early stages of the 

digital era was due to the lack of hardware and software 
necessary to achieve similar accuracy to ranging sensors when 
generating dense point clouds with digital image matching 
(DIM). Some drawbacks arose from this data acquisition 
approach, such as the increase in the project’s cost due to the 
necessity of more sensors to be integrated in the platform. 
Recently, some studies attempted to use both ALS and DIM point 
clouds towards a better topographic reconstruction (Mandlburger 

et al., 2017). 
 
The technological advances enabled improvements on both the 
hardware computational capacity and the algorithms that runs on 
it. Since the late 1990’s, there were several breakthroughs from 
the computer vision scientific community which, together with 
the computational power of general-purpose graphic processing 
units (GPGPU), made feasible some techniques such as the 
structure from motion (SfM) and multi-view stereo (MVS). 

Haala (2009) emphasizes that both feature and/or intensity-based 
matching for automatic aerial triangulation was available on 
commercial software from more than two decades back, i.e., 
since 1989.  
 
Two classes of methods are intrinsically related to the SfM 
pipeline: the sparse and dense image matching. The first class of 
methods had a significant leap with the scale invariant feature 

transform (SIFT) (Lowe, 2004) and subsequently by similar 
techniques such as the speeded-up robust features (SURF) (Bay 
et al., 2008), for instance. Those methods, together with the 
random sample consensus (RANSAC), provided great 
improvements and automation on image matching and, 
consequently, on image orientation tasks and 3D reconstruction 
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from images. The second class of methods (dense matching) can 
be tracked down to approaches such as the vertical line locus 

(VLL), that can be considered in different modes, as single stereo 
(Helava, 1988), multi-view and in enhanced multi-view (Zhang 
et al., 2018). However, the most basic algorithms are likely to fail 
under some conditions, since they rely on template matching 
(area-based matching). Image matching is considered as an ill-
conditioning problem (Heipke, 1996), since the solution may 
exist, not exist (due to occlusion) or be ambiguous (in 
homogeneous surfaces and/or repeated patterns). The leap in 

computational power allowed the development of more robust 
techniques such as the semi-global matching (SGM), which 
addresses those problems by introducing penalties on the cost 
function minimization procedure (Hirschmüller, 2008; Ressl et 
al., 2016). According to Haala (2009), the SGM consist of a 
pixelwise matching technique based on mutual information 
which applies an approximation of a global smoothness 
constraint.  

 
As mentioned earlier, aerial surveying projects (both manned or 
not) can integrate imagery and ranging sensor technology, thus 
allowing both the reconstruction of the surface from the ALS and 
the Photogrammetric pipeline. Despite the scientific community 
efforts, there are few evaluations regarding the surface 
reconstruction and extraction of building roofs using point clouds 
derived from both ALS and imagery. 
 

1.1 ALS versus DIM 

The accuracy of ALS derived point clouds depends on two 
principal factors: the distance measurement accuracy and the 
quality in which the platform trajectory can be retrieved. This 

second factor is also important for the direct georeferenced 
imagery on SfM derived point clouds, however, the main aspects 
that contribute to the accuracy, in this case, lies in the geometrical 
properties of the camera and the block of images, that is, 
overlapping percentage and baseline-to-height ratio, for instance. 
Haala (2009) emphasizes that the geometric accuracy of the DIM 
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is influenced by the quality of the reconstructed image geometry 

during the bundle block adjustment. 
 
According to Mandlburger et al. (2017), the typical point spacing, 
as well as the expected height precision for DIM point clouds, 
can be down to image GSD. In this case, it is assumed that a 
robust matching technique is applied, and the proper geometric 
conditions of the block are met. The height measured by ALS can 
be even more precise, as of 2-3 cm on modern systems. Ressl et 

al. (2016) report that nowadays, the GSD is typically in the range 
of 5-20 cm, with the possibility of being even smaller with the 
usage of UAVs, i.e., lower flight heights.  

 
1.2 Related work 

Haala (2009) evaluated the surfaces reconstructed using the 
software “MATCH-T DSM” over the German Society for 
Photogrammetry, Remote Sensing and Geoinformation (DGPF) 
dataset which resulted on several digital surface models (DSM). 
According to Ressel et al. (2016), the “MATCH-T DSM” 
implements the SGM algorithm under the cost-based matching 
(CBM) terminology. Haala (2009) adopted an ALS point cloud 
as a reference, and the comparison results made clear that image 

matching is more error-prone, mainly if there are moving objects 
during the image acquisition. Haala (2011) has also verified the 
feasibility of multiple stereo matching on the SGM algorithm, 
i.e., using the multi-view stereo (MVS) to compute the disparity 
maps. Depending on the forward and side overlaps, the 
redundancy on the point correspondence can benefit the 
geometric accuracy of the surface, as well as allowing an efficient 
quality analysis. From these studies, the author mentions that 

although less accurate, the image matching point clouds can be 
used for several standard applications with sufficient quality. 
 
A comparative discussion over LiDAR and SGM for DSM 
generation was published by Gehrke et al. (2012). In this study 
the authors presented a dense matching approach based on stereo 
images captured with line scanners. The authors emphasize some 
advantages of the SGM technique over ALS, such as the lower 

cost and that the orthoimages can be generated from the same 
data set. From this comparison the authors concluded that the 
SGM-derived point cloud is in accordance with the ALS one, 
except in vegetated areas.  
 
A similar study was conducted by Rahmayudi and Rizaldy 
(2016), where the authors compared DTM generated from image 
matching and ALS. It was understood that point clouds derived 
from image matching are prone to error on post-processing such 

as filtering in ALS. Although both techniques might generate 

point clouds with outliers, ALS is likely to present a lower 

quantity of them in general. Also, ALS is more interesting even 
on densely vegetated areas, since the pulse penetration in the 
canopy can reach deeper levels (even the ground surface in some 
cases, depending on how sparse the tree canopy is). 
 
Maltezos and Ioannidis (2015) conducted an evaluation of the 
automatic detection of building roofs using point cloud derived 
from ALS and image. In this study the authors conclude that, 

although DIM is a reliable technique, ALS still provides better 
accuracy. Especially in the DIM context, Dall’Asta and Roncella 
(2014) performed a comparison between local and global 
matching algorithms for surface reconstruction. As expected 
from the results of image matching (Heipke, 1996), local 
matching techniques are less reliable on homogeneous surfaces 
or on repetitive patterns than global approaches. This emphasizes 
the dependency on texture features in order to achieve good 
performance.  

 
Exploring the current trend of deep learning applications, Politz 
and Sester (2018) tested Convolutional Neural Networks (CNN) 
on both ALS and DIM data towards a better semantic 
segmentation. The point cloud data needed to be converted to a 
raster representation, which eliminates the density factor. The 
experiments performed by these authors showed that the ALS 
was able to outperform the DIM, since the best network achieved 

an overall accuracy of 96% and 83%, respectively. 
 
From this discussion, the method that produces the best positional 
accuracy might be unclear, since the literature is not in 
accordance. However, several studies indicate that both data 
sources are comparable and useful for some applications. In this 
sense, our study provides a comparison between ALS and DIM 
point clouds by assessing the absolute positional accuracy 

achieved with both techniques. In the following assessment, the 
characteristics unique to a single technique are disregarded, such 
as laser beam penetration in the vegetation canopy, for instance.  
 

2. MATERIALS 

The data used in this study comes from the UNESP 
Photogrammetric Data Set (Tommaselli et al., 2018), which 
made available the aerial imagery and ALS point clouds 
(Table 1). The flights were conducted in 2014, and the region of 
interest (highlighted in Figure 1) selected for this study comprises 
the central area of the UNESP campus in Presidente 
Prudente/Brazil. 
 

 

Aerial imaging characteristics ALS characteristics 

Camera manufacturer Phase One ALS manufacturer Riegl 

Camera model iXA 180 ALS model LMS-Q680i 

Operation range (min, max) 100 m, 10000 m Operantion range (min, max) 30 m, 2000 m 

Nominal focal length* 55 mm Laser beam divergence ≤ 0.5 mrad 

Pixel size 5.2 μm Scanning mechanism rotating polygon mirror 

Radiometric resolution 12 bit Scan pattern parallel scan lines 

Spectral bands R-G-B Scan angle range ± 30° 

CCD format (mm) 53.70 x 40.40 Scan speed 10-200 lines/sec 

CCD format (px) 10328 x 7760 Measurement rate up to 266 kHz 

Forward motion compensation by TDI Nominal accuracy ** 20 mm 

Average flying height 1300 m Average flying height 550 m 

Average GSD 12 cm Average density 12 points/m2  

* selected from 28-240 mm range ** at 250 m distance 

Table 1 – Characteristics of both data and equipment used to acquire the point clouds. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W12-2020, 2020 
2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS 2020), 22–26 March 2020, Santiago, Chile

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-509-2020 | © Authors 2020. CC BY 4.0 License. 

Primary publication at IEEE Xplore: https://doi.org/10.1109/LAGIRS48042.2020.9165587

 
 

510



 
Figure 1 – Study area, the region of interest and checkpoints survey. 

 
There are several software for SfM data processing: Agisoft 
Metashape, Pix4Dmapper, and nFrames SURE, for instance. 
However, despite parameter tuning effects, these software 

provide similar results as reported by Alidoost and Arefi (2017). 
For the analyses considered in this paper, the SfM pipeline was 
performed in Agisoft Metashape version 1.5.3 (formerly known 
as Photoscan), whereas both ALS and DIM point clouds were 
manipulated and visualized in CloudCompare version 2.10. The 
vertical accuracy assessment was performed using the rapidlasso 
LAStools library and ESRI ArcGIS version 10.7.  
 
In total, 303 vertical checkpoints were collected in the region of 

interest (shown in Figure 1) using a couple of double frequency 
Topcon Hiper Lite GNSS receivers. The coordinates were 
determined with approximately 1 cm precision using RTK 
positioning. All vertical checkpoints were collected on the 
ground surface, most of them over grass. This assessment 
procedure forgoes the necessity of artificial targets to be placed 
before the flight since a close approximation of the vertical 
coordinates is already enough to compute the height difference. 

Additionally, 48 checkpoints were collected in building roof 
corners on the region of interest. This data collection was 
conducted with a reflector-less Topcon GTS-239W total station 
in two closed traverse surveys. Each checkpoint was measured 
from at least two different stations to ensure redundancy. 
 

3. EXPERIMENTS 

3.1 Absolute positional accuracy 

Two experiments were conducted to assess the absolute accuracy 
of both ALS and DIM point clouds, and their results are presented 
in Table 2. In experiment I, the vertical accuracy was determined 
for both point clouds. In total, 303 vertical checkpoints were 
considered, being used the lascontrol tool from rapidlasso 
LAStools. This tool computes the height difference between the 
checkpoint and the expected height at the same position in the 
point cloud. To derive the expected height, a triangular irregular 

network (TIN) mesh is computed over the point cloud, which is 

used to interpolate the height. In experiment II a simpler and 
straightforward approach was adopted. In this strategy, the 3D 
Euclidian distance from each of the 48 checkpoints to their 

respective closest ones in both point clouds was computed.  
 

 

Experiment I 

(only Z) 

Experiment II 

(3D distance)  

Data 

source 

Mean 

(cm) 

Std. Dev. 

(cm) 

Mean 

(cm) 

Std. Dev. 

(cm) 

ALS 7.05 3.45 31.28 33.42 

DIM -34.85 23.28 49.19 35.34 

Table 2 – Absolute accuracy assessment. 
 
It is important to observe that the ALS point cloud was acquired 
at less than half the flight height of the images (550 m other than 
1300 m), thus, it is expected to have better accuracy. As can be 

seen from the experiment I (shown in Table 2), the ALS system 
was able to produce a point cloud with better vertical accuracy 
than the DIM. The spatial distribution of vertical errors is better 
visualized in Figure 2. Apart from displaying a narrower vertical 
error range, the ALS point cloud appears to have a better 
distribution (similar to a Gaussian) of those errors as shown in 
the histograms in Figure 2. 
 

Most of the vertical errors in the ALS point cloud are in 
accordance with manufacturer claims (Table 1). A similar note 
can be derived for the DIM point cloud, in which most of the 
vertical errors are within 3 GSD. Observing the Figure 2b and 
comparing it to Figure 1a, it can be noted a positional correlation 
between the vertical errors and the amount of texture information 
in the images. In order to investigate this effect, two small regions 
were selected (one homogeneous and another heterogeneous) and 

had their vertical errors compared to the color histograms 
generated from the digital numbers (DN) in each band (R, G, B), 
as shown in Figure 3.  
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Figure 2 – Vertical error assessment: Kriging results and 
respective histogram. ALS (a) and DIM (b) point clouds. 

 
Pure grass regions such as in Figure 3a are more likely to yield 
poor matching accuracy, therefore an increase in vertical error 
due to the lack of texture. Otherwise, if the region contains at 
least some features as in Figure 3b, the vertical error tends to 

minimize.  
 
Observing the results from experiment II and accounting for the 
flight height difference, it can be noted that both techniques 
provide similar accuracy. However, the ALS will be a better 
option in most cases if the vertical accuracy is crucial, as in some 
engineering tasks, for instance. It is important to highlight that 
this observation refers to an automatic DIM approach and the 

results might be different if a human operator performs the 
measurements.  
 
3.2 Building roof shape extraction 

To perform the building extraction assessment, a reference shape 
is needed. The Presidente Prudente dataset reference polygons 
building roof outlines were derived using a manual image 
restitution process, following the Photogrammetric pipeline, 
performed in the ERDAS IMAGINE system.  

 
Figure 3 – Influence of texture information on DIM vertical 

accuracy for 2 areas: homogeneous (a) and heterogeneous (b). 
The average and standard deviation are in DN (digital numbers), 
normalized in the interval [0,1] for each image band (R, G, B). 

 
According to Potučkvá and Hofman (2016), there are several 
metrics available to perform the quality assessment of the 
extracted polygons that represent building roofs. This study will 
focus on the Polygons and Line Segments (PoLiS) metric 
proposed by Avbelj et al. (2015) and in F-score (Sokolova et al., 
2006). Considering two polygons A and B with q and r vertices, 
respectively, the PoLiS metric is defined as: 

 

 
𝑝(𝐴, 𝐵) =  

1

2𝑞
 ∑ min

𝑏∈𝜕𝐵
‖𝑎𝑗 − 𝑏‖

𝑎𝑗∈𝐴

+
1

2𝑟
 ∑ min

𝑎∈𝜕𝐴
‖𝑏𝑘 − 𝑎‖

𝑏𝑘∈𝐵

 (1) 

 

Other than distance-based metrics, the error matrix quantities can 
be adapted to evaluate the extraction accuracy as well. The true 
positives (TP), false positives (FP), true negatives (TN) and false 
negatives (FN) can be computed using the area of the objects of 
interest. The completeness and correctness are two metrics 
derived from the error matrix that are commonly used to evaluate 
remote sensing data. A third metric is the F-score, which can be 
computed as the weighted harmonic mean of the completeness 

and correctness, but can be also derived directly from the 
elementary quantities TP, FP and FN: 

 
 

F-score =
2 TP

2 TP + FP + FN
 (2) 

 
The two selected metrics (PoLiS and F-score) have a distinct 
interpretation. When the extracted polygon is in agreement with 
the reference, it is expected that the PoLiS value is going to 
approach zero (since it is a distance measure), whereas the F-
score will converge towards one (as an accuracy rate).  
 
Two buildings were selected to evaluate the building roof shape 

extraction (Figure 4). These two buildings are a laboratory and a 
coffee shop, respectively, both within the Unesp campus. The 
building boundaries were extracted from both ALS and DIM 
point clouds using the same method and then compared to the 
reference. As mentioned before, to apply the boundary extraction 
algorithm, the point cloud must be classified, and the building 
points identified. In this study, this pre-processing step was 
conducted using the following tools: lasground (with the “city” 
option enabled), lasheight and lasclassify. Finally, the 

lasboundary was applied to extract the building roof shapes, 
using the “disjoint” and “concavity 1” options enabled.  
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Figure 4. Building roof shape extraction quality assessment. 

Legend: TP (●), FN (●) and FP (●). 
 

The reference polygon vertex count for each building is presented 

in Table 3, and these values can be interpreted as indicators of 
geometrical complexity. A noticeable fact is that usually, the 
DIM results yield polygons with a bigger area than the ALS 
(Table 3). This also can be seen in Figure 4, but by the FP 
occurrences.  
 
The F-score and PoLiS metrics are presented in Table 4, where it 
can be noted that in general, the ALS achieved a similar or better 
accuracy for these two buildings. The PoLiS distance computed 

for Building 1 also presents a considerable discrepancy between 
ALS and DIM.  
 

Building 
Area (m2) Number of 

vertices Reference ALS DIM 

1 

2 

1974.05 

507.86 

1988.77 

487.94 

1990.85 

516.75 

8 

19 

Table 3. Characteristics of the selected buildings.  
 

Vegetation close to the building roofs can cause problems, as can 
be noted for Buildings 1 and 2 in Figure 3. In these cases, some 
of the FP occurrences are due to the incorrect classification of 
canopy near the roof edges. Objects such as antennas 
(Building 2) are also error sources, as they increase the 
geometrical complexity of the building roof. 
 

Building 
F-score PoLiS (m) 

ALS DIM ALS DIM 

1 

2 

0.99 

0.95 

0.98 

0.95 

0.27 

0.52 

0.58 

0.52 

Average 0.97 0.96 0.39 0.55 

Table 4. Building roof shape extraction results. 
 
These results show that, although DIM provides a slightly less 
accurate building roof delineation when compared to ALS, it 
constitutes an alternative data source that can be used for several 
applications. 

 
4. CONCLUSIONS 

In summary, both data sources (ALS and DIM) were able to 
provide accurate point clouds. The advantage of ALS is that the 
equipment is robust to some characteristics of land cover that can 

be problematic on matching algorithms, such as the lack of 

texture information. In those situations, the ALS is expected to 

provide better vertical accuracy. Despite those cases, the two 
techniques can achieve comparable results.  
 
Further research must be conducted to assess different aspects of 
ALS and DIM techniques. Besides, it is important to keep this 
discussion, comparison, and positional accuracy assessment up 
to date, as newer equipment and methods are in constant 
development. The DIM has great potential to improve as newer 

algorithms are developed. 
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