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ABSTRACT: 

 

In this study, the susceptibility to landslides at Sevilla township, Valle del Cauca, located at southwest of Colombia was evaluated. The 

conditioning factors that involve the generation of landslides were evaluated using Geographic Information Systems (GIS) and Remote 

Sensing (RS) techniques. For the estimating susceptibility, an Artificial Neural Network (ANN) was implemented by applying the 

“Backpropagation” method to extract the synoptic weights of the conditioning variables (slopes, flow length, curvature, geology, 

fracture density, and land cover) on an automatic way with a data training module. The data for the analysis of the conditioning factors 

were carried out through a Digital Elevation Model (DEM) obtained through Radar Interferometry techniques, with Sentinel-1B 

satellite images for the year 2018. The results showed that Sevilla’s township has areas with high susceptibility, high slopes, and that 

it’s crossed by an active geological fault which implies that the earth's dynamics will condition the terrain stability. 

 

 

 

1. INTRODUCTION 

The susceptibility of a land is known as soil’s tendency to 

generate phenomena on removal, depending on its intrinsic 

properties, that is, it shows the predisposition of the 

environment and the elements that make up the landscape such 

as, geomorphology, geology, coverage, etc. 

 

During the years 1996 to 2002 at Sevilla Township there were 

9 landslide events, which caused a total of 37 people dead, 104 

injured and 141 affected population (Ingeominas, 2002). 

However, the only ones affected were not only the inhabitants 

of its urban capital, but also those of its surroundings, which 

have suffered great losses due to the interruptions of the social 

and economic dynamics that this phenomenon generates. An 

example of this occurred on December 24, 2012. A landslide 

of about 130,000 cubic meters of land, partially destroyed the 

road at Cristales sector, which led to subsidence on the road up 

to 3 meters. More than 7,000 peasants from 24 adjacent 

villages were isolated to the rest of the regions and this affected 

dramatically the economy of these sectors. (El País, 2013). 

 

According to investigations carried out by the Colombian 

Geological Service (SGC), there are different methods for 

mapping landslides susceptibility, which are linked to factors 

such as: level of study detail, suggested scales for those levels, 

among others. The methods for obtaining a final susceptibility 

map are classified as semi-implicit and explicit (empirical, 

semi-analytical and analytical) (Ingeominas, 2002). 

 

The explicit semi-analytical method, also known as heuristic, 

has been used by SGC, (2017), Wachal & Hudak, (2013), 

IDEAM, (2012), Parise, (2001) Süzen & Doyuran, (2004a, 

2004b) and Van Westen, (1993), who classify the conditioning 

factors through the use of weighted scores and a combination 

of mathematical equations. The weights are assigned by 

specialists with experience in the study field who determine 

the values for each variable in order to indicate the 

contribution of each variable into terrain susceptibility. 

 

The use of GIS is a key point for mapping landslides (Guzzetti, 

and Paola Carrara, 1999), as it allows different calculations 

using large datasets. This tool is commonly used because it 

facilitates data management and mapping susceptibilities 

produced by each selected variable. For the calculation of the 

contribution of each variable to susceptibility, a statistical data 

management method known as a univariate method is used, 

and then, through a multivariate analysis, all considered 

variables are related (Chacón, et al., 2006; Dai, Lee, & Ngai, 

2002; Parise, 2001; Süzen & Doyuran, 2004a, 2004b; Van 

Westen, 1993). 

 

Kawabata & Bandibas (2009) and Pradhan & Lee (2010b, 

2010a), propose a multivariate statistical technique using an 

ANN to calculate the landslides susceptibility produced by the 

set of variables considered. In this method, neurons are 

organized as sequential layers, each consisting of one or more 

neurons: the input layer, the hidden layer and the output layer. 

It is a feedback network where each route has an assigned 

weight that dictates the scale of the relationships between 

neurons. Weights can take positive or negative values, and 

their distribution within an ANN determines their performance 

by using information processing. 

 

Machine Learning tools such as Artificial Neural Networks 

(ANN) are important because they allow obtaining a 

prediction of susceptibility in a given area taking into account 

the selected variables (Kawabata & Bandibas, 2009; Pradhan 

& Lee, 2010b, 2010a). The quality of the result obtained 

depends on different aspects such as: the inputs entered, the 

type of variables to be used: continuous or discrete, the pixel 

size, the polygons of events for training and testing, among 

others. 

 

Bui et al, (2013) used Support Vector Machines (SVM) for the 

calculation of susceptibility in Hoa Binh province, Vietman. 

SVM constructs an n-dimensional hyperplane which separates 

the classes represented as sample points in space, maximizing 

the distance from the nearest samples and the hyperplane that 

separates them. With the above, a map with two classifications 

(with susceptibility - without susceptibility) is obtained as the 

final forecast. 
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At present, landslides remain latent at Sevilla township, Valle 

del Cauca, therefore, organizations such as the Regional 

Autonomous Corporation of the Valle del Cauca (CVC) and 

the Seismological and Geophysical Observatory of the 

Colombian Southwest (OSSO) periodically follow-up the zone 

through technical visits to the reported affected areas (CVC & 

OSSO, 2011); In addition, the Colombian Geological Service 

(SGC) has studies of this nature, however, they are not 

updated; leaving aside the possibility of carrying out precise 

and periodic model that allows prevention and mitigation plans 

for anticipating a new event. 

 

This article presents the methodology applied to estimate the 

susceptibility to landslides in the municipality of Sevilla, Valle 

del Cauca. An ANN was implemented, applying the 

“Backpropagation” method to extract the synoptic weights of 

the conditioning variables. The slope, flow length and 

curvature variables were obtained from a DEM generated by 

Radar interferometry (INSAR). Random Forest (RF) 

supervised classification was performed to obtain coverage 

types. 

 

2. STUDY AREA AND MATERIALS 

Sevilla is a municipality located on the western flank of the 

central mountain range of Valle del Cauca - Colombia, 

composed of mountains of asymmetric and irregular slopes. It 

has slopes between 0 to 30% at central area, and between 30 

to 100% at the north side (SGC, 2013). It is inhabited by 

approximately 45,152 people, who are in risk due to 

conditioning and detonating factors that cause landslides. 

Landsat 8 OLI Optical satellite images and Sentinel 1B radar 

images for the second half of year 2018, were used for the 

study. The data was downloaded through NASA's Alaska 

Vertex platform (https://www.asf.alaska.edu). Information 

regarding geology and fracture density in shapefile format at 

1:25 000 scale were provided by CVC  

 

Landslide inventory (coordinates, date of occurrence, and 

sliding type) was obtained through the geovisor belonging to 

the SGC web portal (http://simma.sgc.gov.co). 

 

3. METHODOLOGY 

3.1. Digital Elevation Model Generation 

The DEM was performed using Sentinel 1B and 1A images of 

descending order and polarization "VV", corresponding to 

2018, applying the synthetic aperture radar interferometry 

technique (InSAR). For processing, two images were selected 

per each semester with a short time difference between them. 

The oldest image was assigned as “master” image and the most 

recent as “slave” (Ivan, Singleton, Horák, & Inspektor, 2017). 

 

The images were processed through the SNAP software of the 

European Space Agency (ESA), using the following steps: co-

registration, interferogram formation, deburst, Goldstein phase 

filter, unwrapping phase, elevation phase and Doppler terrain 

correction (Pepe & Calò, 2017). SNAPHU was implemented 

in Linux operating system for image development, which was 

subsequently used for an elevation phase generation (Geymen, 

2014). 

 

3.2. Variables parametrization process 

The variables curvature, flow length, and slope, were extracted 

from the DEM using the Arctoolbox tools of the ArcGIS 

10.3© software. On the other hand, the geology and fracture 

density variables were obtained according to the “.shp” file 

provided by the CVC; finally, the ground cover was acquired 

from processing Landsat 8 images. Figure 1 shows the 

methodological scheme for estimating the susceptibility by 

using an ANN.  

 
Figure 1. Methodological scheme. 

 

For the land slope calculation was applied (1) (ArcGis, 2019). 

 

𝛾 =  𝑡𝑎𝑛−1 √(
𝑑𝑧

𝑑𝑥
)

2
+ (

𝑑𝑧

𝑑𝑦
)

2
 (1) 

 

Where: γ is slope in degrees; 𝑑𝑧/𝑑𝑥 is the surface change rate 

in horizontal direction; 𝑑𝑧/𝑑𝑦 is the surface change rate in 

vertical direction. 

 

Its value was measured in degrees from 0º to 90º and is closely 

related to the mass movement’s appearance, since it is the main 

geometric factor that appears in the stability analyses. 

 

The curvature corresponds to the value of the second 

derivative of the input surface cell by cell, as indicated in (2) 

(ArcGis, 2019). 

 

𝐶𝑣 = 𝑓"(𝐼𝑆) (2) 

 

Where: 𝐶𝑣 is curvature; 𝑓"(𝐼𝑆) is the second derivative of the 

input surface. 

 

It is composed by two aspects: concavity and convexity of the 

land. The value 0 indicates that the surface is flat, positive 

values that the surface is convex towards the cell and the 

negative ones indicate concavity towards the cell. 

 

Flow length was generated by calculating the direction and 

flow accumulation. The format used was “raster”, which 

means that pixel by pixel was operated taking into account the 

existing length upstream of the cell. The flow direction was 

determined by the direction of the steepest descent, or 

maximum fall, from each cell. It was calculated by applying 

(3) (ArcGIS, 2019). 
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𝑚𝑑 =  
𝑑𝑧

𝑥
∗ 100 (3) 

 

Where, 𝑚𝑑 is maximum drop: 𝑑𝑧 change in height value; 𝑥 is 

the distance calculated among cell centers. 

 

The flow length, meanwhile, corresponds to a global function 

responsible for calculating the length of the longest flow path 

within a given basin, using equation (4) (ArcGis, 2019). 

 

𝐹𝑙 = 𝑓(𝑓𝑑𝑟, 𝑑𝑚, 𝑤𝑟) (4) 

 

Where, 𝐹𝑙 is flow length; 𝑓𝑑𝑟 is flow direction raster; 𝑑𝑚 is 

direction measurement along the flow path; 𝑤𝑟 is weight 

raster. 

 

In the weighting of rocks quality, texture attributes / factory 

composition, age, origin and mechanical resistance are 

considered as qualifying attributes and / or grouping factors. 

Based on the stratigraphic chrono units, igneous rocks are 

clasified according to their texture / factory and strength 

attributes. Sedimentary rocks are classified according to 

typical resistance ranges, and metamorphic rocks according to 

texture and mechanical strength (IDEAM, 2012). Table 1 

shows the resistance ranges proposed by Hooke (2000). 

 

Table 1. Resistance ranges 

Resistance ranges (Mpa) Grade Score Category 

Extremely hard >250 R6 1 Very low 

Very hard 100-250 R5 1 Very low 

Hard 50-100 R4 2 Low 

Moderately Hard 25-50 R3 3 Half 

Soft 5-25 R2 4 High 

Very soft R1 5 Very high 

Extremely soft R0 5 Very high 

 

To generate the fracture density map at 1:25 000 scale, with a 

pixel size of 30 m, a buffer or affectation radius of 500 m was 

defined, based on the structural geology layer referring to 

folding and faults of the municipality (5).  

 

𝐷 =  
(𝐿1∗𝑉1)+(𝐿2∗𝑉2)

𝐴𝑐
 (5) 

 

Where, 𝐷 is fracture density; 𝐿𝑖 is the length of fault lines; 𝑉𝑖 

is weight of tectonic activity; 𝐴𝑐  is the circle area. 

 

The procedure consists in calculating the density of lines in the 

vicinity of each pixel, which is defined by a search radius R, 

the length of the fault lines that fall within this circle is 

measured and multiplied by weight tectonics activity. Finally, 

the total sum of the length of the fault lines is divided by the 

circle´s area, as shown in Figure 2. In cases where some value 

of Vn is not qualified, the length measured in the circle will be 

taken. (SGC, 2013). 

 

 
Figure 2. Procedure to calculate fracture density 

 

Land coverage: To obtain coverage types, Landsat 8 satellite 

images were used for the years of study. The Python 

programming language was used for applying the Random 

Forest (RF) supervised classification method (Wang, Li, Jin, 

& Xiao, 2019). A total of 3000 regression trees were used to 

obtain the classification map for land usage and coverage. 

 

For training the Random Forest classifier, 300 samples were 

used. Those corresponds to five categories of land coverage, 

according to the Colombian adaptation of the European 

methodology for CORINE Land Cover classification. An 

additional category corresponds to the presence of clouds in 

the scene. The classes obtained refer to lands dedicated to 

agricultural activities, forests and semi-natural areas, bare 

areas, urban areas and water surfaces. For each of these 

classes, 50 samples were obtained. The 85% of the data was 

used to feed the model, and the remaining 15% was kept it for 

validation of the adjusted models. Finally, the susceptibility 

classification was carried out with the ranges presented in 

Table 2. 

 

Table 2. Susceptibility categories according to coverage type 

Coverage Level Score.  Category 

Urban zone 4 High 

Transient crops 2 Low 

Permanent crops 2 Low 

Herbaceous and shrub vegetation 3 Moderate 

Weed grasses 3 Moderate 

Clean pastures 4 High 

Gallery and Ripario Forest 1 Very low 

Dense forest 1 Very low 

Arbustal and dense thicket 1 Very low 

Bare and degraded lands 4 High 

Inland waters 1 Very low 

 

3.3. Artificial neural network 

For the generation of the ANN, the layers for the study 

variables were loaded and from these, the polygons that 

contains areas with presence and absence of landslides are 

carried out by using Sentinel and Google Earth Pro images. 

The ANN training was performed selecting 800 random data, 

400 with presence and 400 with absence of landslides. For 

extracting the pixel value of each variable, an algorithm was 

made in Python. 

 

With the delimitation of the zones, a matrix was defined based 

on: updating matrix size for each variable, conversion to a 

vector format by means of a “reshape” and binarization 

process. A column of 1’s and 0’s was added to areas with 

presence and absence of landslides, respectively. The six 

columns of the variables and the additional one of the binary 

classification was taken to create a single matrix of seven 

columns. 
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The ANN model is created with six (6) input neurons, one (1) 

hidden layer with a total of 13 neurons and two (2) output 

layers. The “tanh” activation function was used in the input 

layer and “ReLU” in the hidden layer. For the training body, 

the first six columns of the matrix were used as the base, and 

the seventh column with the test. The weights of the variables 

are adjusted through the “BackPropagation” method using a 

total of 15% of the data for validation. 

 

Finally, susceptibility estimation was carried out through the 

ANN training model performed and the complete images of 

each variable, in matrix format (Figure 3). 

 

 
Figure 3. Artificial neural network architecture 

 

4. RESULTS 

4.1. Random forest classification 

In this project, the Random Forest (RF) method was applied to 

classify Landsat 8 images. Accuracy of 80%, 90% and 100% 

was obtained for coverage identification. The confusion matrix 

(Figure 4) shows that in four of the six categories, the 

assignment was successful and in two categories there was a 

percentage equal to or greater than 80%. The cloud class is not 

taken into account in susceptibility because it does not 

correspond to values in the field. 

 

 

 
Figure 4. RF confusion matrix: (1) artificial territories, (2) 

agricultural, (3) forests, (4) bare areas, (5) water surfaces and 

(6) clouds. 

 

The Digital Elevation Models (DEM) was developed by using 

the Synthetic Aperture Radar Interferometry, Sentinel 1 

images, and SNAP software. A pixel size of approximately 14 

m was obtained and an accuracy error of approximately 3 m.  

 

4.2. Susceptibility estimation (2018, second period) 

Susceptibility estimation was obtained through multivariate 

statistics. An artificial neuronal network was used with six (6) 

input neurons, one (1) hidden layer with a total of 13 neurons 

and two output layers; the variables slope, curvature, flow 

length, coverage, lithology and fracturing were used. A 

training accuracy of 97% was obtained. 

 

The validation of the neural network was performed using the 

backpropagation method with the. 15% of the data that were 

not included in the model. A network accuracy of 97.26% was 

obtained. Figure 5 shows the susceptibility model for Sevilla 

township, Valle del Cauca, obtained through the artificial 

neural network. 

 

Very low susceptibility: It is found in the majority of the 

municipality, approximately 74.51% (corresponding to 

433.386 ha). In these areas, the network did not find many 

pixel values corresponding to susceptible lands according to 

the sum of synoptic weights in the hidden layer. This type of 

susceptibility corresponds to terrain with flat and abrupt 

topography, however, the characteristics of the soil and its 

geology do not generate instability. 

 

Low susceptibility: Belonging to 10.06% of the municipality 

with a total of 58.480 ha. It is found in areas near fault lines 

and unstable geology, however, the slopes correspond to 

values between 0° to 12°. 

 

Moderate susceptibility: Present in 8.25% of the 

municipality with 47.997 ha. It appears in areas adjacent to 

fault lines, steep slopes, but with a high level of drainage, 

therefore, susceptibility is maintained at this level. 

 

 
 

Figure 5. Susceptibility 2018-2 by RNA 
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Figure 6. RNA susceptibility level 

 

High susceptibility: It is located in 2.64% of the municipality, 

corresponding to 15.355 ha. In these regions, mountain ridges 

with high characteristics of each of the variables involved (soil 

cover, geology, curvature, fault density, slope and flow length) 

are taken. 

 

Very high susceptibility: Present in 4.54% of the territory of 

Sevilla, Valle del Cauca, with a total of 26.420 ha; a hierarchy 

is evident in the variables of fracture density and geology, 

since it belongs to the pixels located in the course of the faults 

present in the sector. 

 

5. CONCLUSIONS 

The municipality of Sevilla - Valle del Cauca, is located on 

steep topography, low stability soils in terms of its physical 

and chemical composition, and close to the interception of 

fault lines, which creates ideal scenarios for landslides. 

 

Artificial Neural Networks have a number of advantages over 

the different methods used to estimate susceptibility. One of 

them is based on the use of the “Backpropagation” technique 

that facilitated the procedure to reach total susceptibility, 

because for its implementation and structure only a hidden 

layer with a low number of neurons is necessary (13 in this 

case), the input layer (6 neurons) and finally, the output layer 

(2 neurons). With the above, there is another advantage, which 

focuses on the processing capacity, since a large computational 

capacity is not required for its realization. Finally, unlike 

deterministic methods, it does not require a set of experts who 

must assess each of the variables to be used. 

 

Performing the prediction of susceptibility to landslides 

through the implementation of Artificial Neural Networks 

(ANN) is more optimal than when performed with SVM 

techniques because they can have variations and a greater 

number of classifications who can be used to assess a more 

detailed terrain qualities while with SVM it could only have a 

dichotomous result. 

 

According to the susceptibility map obtained, it is evident that 

the geology is decisive in the stability of the terrain, since, 

where a fault line is located, fault interceptions or changes in 

the composition of the terrain, the susceptibility of the terrain 

grows progressively. 

 

It is possible to obtain a more accurate result in the calculation 

of susceptibility by means of ANN, using continuous 

variables, instead of discrete ones, because the continuous 

variables are extracted directly from the DEM and therefore 

contain the own values of the variable, while that the 

continuous ones are based on the heuristic qualification, being 

very prone to variations according to the study area. 

 

Studies of this nature are useful for risk management entities 

and the Basic Land Management Plan (PBOT) as it allows to 

know the sites suitable for urban distribution and expansion. 
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