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ABSTRACT: 
 
The availability of green spaces is an important issue for urban populations worldwide, given the benefits that the green spaces 
provide for health, well-being, and quality of life. But urban green spaces are not always distributed equally for different population 
groups within cities. Latin America is the second most urbanized region of the world, but there are few published studies analysing 
the green space availability for different urban population groups, and less so analysing the long-term trends. This work presents an 
analysis of long-term availability of urban green spaces by different socioeconomic status population groups in Medellin city, 
Colombia, using open geospatial data and open software tools. The results indicate that disparities between different groups have 
been decreasing in the last years, but there are still efforts to do. Showing this kind of analysis based on open data and tools is 
essential as it opens the possibility for replicating it in other cities with scarce budgets. 
 
 

1. INTRODUCTION 

The characteristics of urban form influence the daily life of 
citizens and it is recognized as an important factor in both 
quality of life and environmental impact (Panagopoulos et al., 
2016). According to Tzoulas et al. (2007), poverty and social 
factors are the main determinants of human health in urban 
areas. Environmental features are recognized too, with many 
academic studies providing evidence of a positive correlation 
between well-being, health, and green space (Rigolon, 2018; 
Tzoulas et al., 2007). The mechanisms that explain the 
relationship between urban green space availability, well-being, 
and health are related to some environmental services of urban 
green areas such as decreasing air pollution, noise, and the 
urban heat-island effect (Meerow and Newell, 2017) as well as 
providing pleasant and relaxing views (Nordbø et al., 2018; 
Tomita et al., 2017; Wood et al., 2017). These mechanisms also 
include additional opportunities to perform physical activities 
and improve social engagement, as well as reduced 
psychological stress and depression (James et al., 2016). As the 
urban population grows, the availability of urban green spaces 
gets reduced. Ecosystem quality tends to decrease as urban 
density increases (Panagopoulos et al., 2016) and city planning 
has to address trade-offs between city development and the 
preservation of green or natural spaces within the urban fabric 
(Bertram and Rehdanz, 2015).  
 
The availability of green spaces throughout the city is becoming 
an important topic for urban populations worldwide. Urban 
green spaces are often not distributed equitably across different 
population groups, which is recognized as an issue of 
environmental justice that requires attention (Wolch et al., 
2014). The US Environmental Protection Agency (EPA) 
defined environmental justice as the “fair treatment and 
meaningful involvement of all people regardless of race, colour, 
national origin, or income with respect to the development, 
implementation, and enforcement of environmental laws, 
regulations and policies” (Nelson and Grubesic, 2018). As for 
urban green space, environmental justice means equal access to 
green spaces for all population groups in the city. This concept  
fits directly into the Sustainable Development Goal 11: “Make 
cities and human settlements inclusive, safe, resilient and 
sustainable,” specifically to the 11.7 target: “By 2030, provide 

universal access to safe, inclusive and accessible, green and 
public spaces, in particular for women and children, older 
persons and persons with disabilities.”1 
 
Latin America is the second most urbanized region of the 
planet, with 81% of its population living in urban areas (United 
Nations, 2018). But Latin American cities are still segregated 
both at the social and spatial level (UN-Habitat, 2012), which is 
expressed in the high urban income inequality, the persistence 
of informal settlements, and uneven access to green and public 
spaces, among other issues (UN-Habitat, 2012). Since 1985 
Latin America has gone through a process of fast urbanization 
that has compromised the availability of green spaces for urban 
populations (Wolch et al., 2014; Nor et al., 2017; Dobbs et al., 
2018). The study and defence of environmental justice are 
particularly important for urban populations in Latin America, 
as most of the literature on the topic have addressed cities from 
the Global North and there are very few published works from 
Latin American cities in the academic literature (Rigolon et al., 
2018). To the best of the author’s knowledge, there are no 
published works analysing long-term availability of urban green 
spaces for different population groups by socioeconomic 
characteristics in Latin American cities. Therefore, the 
importance of contributing with empirical evidence from Latin 
American cities to better inform local authorities and urban 
planners about long-term disparities in the urban green space 
provision and insights about how to achieve more inclusive and 
healthier cities in the future. 
 
This study quantifies the availability of urban green space for 
different socioeconomic status (SES) groups in the period 
between 1984 and 2018 in Medellin city using open geospatial 
data and tools. The use of open data and tools to analyse this 
issue is of particular importance for many Latin American cities 
with scarce resources, as this approach could be implemented at 
a relatively low cost. 
 

 
1 https://sustainabledevelopment.un.org/sdg11 
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2. STUDY AREA AND DATA SETS 

2.1 Medellin city 

Medellin city is the second largest city in Colombia (Figure 1). 
It is located in the Andean Mountain Range at 1500 meters 
above sea level in the north-western region of the country and it 
has a population of 2.4 million according to the 2018 National 
Census (DANE2). This city extends over a narrow valley 
crossed by Medellin River from South to North, with the most 
western and eastern neighbourhoods of the city built over slopes 
steeper than 20%. Rapid urban growth in the last decades has 
led to a high degree of spatial heterogeneity in both the 
socioeconomic and physical characteristics of its 
neighbourhoods (Duque et al., 2013): the more affluent 
population is located in the West and South, while the less 
affluent are in the North and towards the urban-rural fringe 
(Patino et al., 2014, Garcia Ferrari et al., 2018). 
 

 
Figure 1. Medellin location map. 

 
2.2 Administrative neighbourhoods’ boundaries 

Urban administrative neighbourhoods were used to select the 
areas of the city that were already part of the urban fabric in the 
first year of the analysis. This dataset was obtained from the 
Open Data website of the city (https://geomedellin-m-
medellin.opendata.arcgis.com/). 
 
2.3 Socioeconomic status 

In Colombia, housing areas are categorized by a socioeconomic 
classification into “strata” for taxation of public services (water, 
sewer, electricity, and gas). This is done to differentially charge 
the home public services based on the socioeconomic stratum 
and to allocate subsidies and charge for contributions. The 
rationale behind the system is that high-income people groups 
pay more for the public services in order to contribute to 
subsidize low-income groups to have the same services at an 
affordable cost (DANE, 2019). This system classifies residential 
households into 6 classes, being 6 the wealthier and 1 the 
poorest, and it is a very good proxy for the socioeconomic status 
of the urban population (Garcia Ferrari et al., 2018). The 
socioeconomic stratification map at block level was obtained 
from the city planning office. For the purpose of this analysis, 
the 6 socioeconomic strata were reclassified into three classes of 

 
2 https://www.dane.gov.co/index.php/estadisticas-por-

tema/demografia-y-poblacion/censo-nacional-de-poblacion-
y-vivenda-2018 

socioeconomic status (SES) as showed in Table 1 (and Figure 
2). 
 

SE strata SES class 
  
1 - 2 Low 
3 - 4 Medium 
5 - 6 High 

Table 1. Reclassification of strata to SES class.  
 
 

 
Figure 2. Urban area of Medellin by SES. 

 
2.4 Residential areas 

Even though the stratification system is intended to classify 
only residential areas, the map of socioeconomic strata shows 
that every urban cadastral parcel in the city was allocated into 
some socioeconomic stratum. The Medellin’s land use map 
obtained was also from the Open data portal of the city and was 
used to identify and extract only residential blocks from the SES 
map for this analysis (Figure 3). 
 
2.5 Urban green space availability, Landsat imagery 

We used Landsat imagery and the normalized difference 
vegetation index (NDVI) to estimate the availability of urban 
green spaces at different locations. According to Rhew et al. 
(2011), the NDVI is a useful measure of greenness, which show 
strong correlation with expert ratings. It can be computed easily 
from open multispectral satellite imagery, and it is widely used 
in epidemiologic and urban research (Gupta et al., 2012; 
Jorgensen and Gobster, 2010; Nordbø et al., 2018). The Google 
Earth Engine platform (Gorelick et al., 2017) was used to search 
and download Landsat surface reflectance images from different 
years from 1984 to 2018 (one every 5 or 6 years) from the 
Landsat 4, 5, 7 and 8 collections (Table 2). The surface 
reflectance images were preferred because they are already 
atmospherically corrected. The main criteria for the selection of 
the images was the cloud cover over the city’s urban area and 
that their anniversary date is as close as possible or at least from 
the same season of the year. However small clouds and shadows 
were present in some of the images as it was not possible to find 
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100% cloud-free images for all the required years. Clouds and 
shadows were masked using the pixel quality bands. The 
masked areas and the gaps from the Landsat 7 SLC-Off images 
were filled using the pixel values at the same location of the 
previous or following images in the same image series to create 
cloud-free composites for each selected date. Figure 4 show 
infrared colour composites of the Landsat images used in the 
analysis. 
 
 

 
 Figure 3. Medellin land use map. 

 
Date Landsat collection 
  
1984-09-02 LANDSAT/LT05/C01/T1_SR 
1989-08-07 LANDSAT/LT04/C01/T1_SR 
1996-08-02 LANDSAT/LT05/C01/T1_SR 
2000-07-12 LANDSAT/LT05/C01/T1_SR 
2005-07-18 LANDSAT/LE07/C01/T1_SR 
2011-07-19 LANDSAT/LE07/C01/T1_SR 
2015-09-16 LANDSAT/LE07/C01/T1_SR 
2018-06-12 LANDSAT/LC08/C01/T1_SR 

Table 2. Landsat image composites and used collections 
(Landsat imagery courtesy of US Geological Survey). 

 
 

 
Figure 4. Infrared colour composites of the Landsat images. 

 

3. METHODS 

This analysis was implemented using the following open tools: 
R (R Core Team, 2013), RStudio (RStudio Team, 2015) and 
QGIS (QGIS Development Team, 2018). The general workflow 
is composed of three main parts: sampling, image processing 
and feature extraction, and descriptive data analysis. The 
availability of urban green space was computed for each year at 
three different buffer sizes from the centroid of residential 
blocks: 100, 300, and 500 meters. 
 
3.1 Sampling 

The aim of the sampling was to obtain a balanced sample of 
residential areas that were already built in 1984. The 
administrative neighbourhood boundaries were overlaid over 
the 1984 Landsat image to identify those neighbourhoods that 
were mostly built-up in that year. The urban neighbourhoods in 
1984 were manually selected and merged in QGIS to obtain the 
reference area for the selection of urban blocks to be analysed. 
 
The SES map spatial unit is the block (n = 25,942). We first 
obtained the centroids of the urban blocks, and then performed a 
spatial join with the land use map to assign the land use 
category to each block centroid. We kept only the residential 
block centroids (full sample, n = 14,719). Then we used the 
1984 reference polygon to narrow that selection to the urban 
areas in that year and obtained 10,750 residential centroids. We 
then counted the number of features by SES class (Table 3) and 
used the minimum to balance the sample: 784 residential blocks 
in each SES class (Figure 5). The feature selection and 
geometric operations were done in R using the “sf” package 
(Pebesma, 2018). 
 

SES class Number of blocks in 1984 
  
Low 6,354 
Medium 3,577 
High 784 

Figure 4. Block centroids count by SES in 1984. 

 

 

Figure 5. Sample of urban block centroids. 
 
3.2 Image processing 

The image processing workflow was fully implemented in R. 
Three different process were applied to the Landsat images: 
relative radiometric normalization, NDVI calculation, and mean 
NDVI extraction for different buffer sizes. The relative 
radiometric normalization was done using the “RStoolbox” 
package (Leutner, et al., 2018), using the automatic pseudo-
invariant feature match technique with the “pifMatch” function 
and the Euclidean distance method to compute similarity 
between image pixels. Then the normalized difference 
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vegetation index was calculated for each year using the “raster” 
package (Hijmans, 2019) with the red and infrared bands of the 
Landsat images, following the classic formula (Equation 1). 
Figure 6 shows the NDVI images. 
 

    
(1) 

 
The extraction of mean values was done using the 
“exactextracr” package (Baston, 2019). We first calculated the 
three different buffers from the centroids with the “st_buffer()” 
function (from the “sf” package), and then extracted the mean 
values within the buffers with the “exact_extract()” function. 
This function has two advantages to compute zonal statistics for 
vector geometries: it is faster than most of the available 
implementations in R, and it allows to assign each extracted 
value directly to the original centroid it belongs, without writing 
it to a different output dataset. 
 

 
Figure 6. NDVI images. 

 
We used the block centroid attribute table with the SES class 
and NDVI values by year and by buffer size as input to the 
descriptive analysis. 
 
3.3 Descriptive data analysis 

The first exploration of the data was the preparation of boxplots 
of mean NDVI values by SES for each buffer size and year. The 
boxplots help to identify the differences on the values 
distributions by groups. Then we calculated the average of all 
extracted values by buffer size by SES class by year and plotted 
them as a series to analyse the evolution of urban green space 
availability from 1984 to 2018. The data plots were created in R 
using the “ggplot2” package (Wickman, 2016). 
 

4. RESULTS AND DISCUSSION 

The boxplots and the temporal plots as well show interesting 
trends in the green space availability by SES class and by 
different buffer size. Figure 7 shows the boxplots, and the 
temporal trend is better illustrated in Figure 8. The boxplots 
show approximately the same trend of differences by SES each 
year, and the difference between SES groups of green space 
availability gets reduced as the buffer size increase. Between 
1984 and 1996 one can observe almost the same trend: the 
medium SES class had the lower availability of urban green 
spaces in the closer neighbourhood (100 m), and the difference 
with the other two SES classes decreases as the buffer size 
increases (300 and 500 m). In 2000 that trend starts to show 
changes, with the high SES class gaining higher availability of 
green space than the other two classes, and from 2005 to 2018 
the availability reorders to show the higher green space 

availability for the high SES class, and the lower green space 
availability for the low SES class, for all buffer sizes. 
 
 

 
 

Figure 7. Boxplots showing the distribution of mean NDVI 
values by SES, buffer size, and year. 

 

 

Figure 8. Temporal plots showing the evolution between 1984 
and 2018 of the average value of mean NDVI by SES class at 

different buffer sizes. 
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The temporal plots confirm those trends. They show that in 
average, the high SES class has the higher green space 
availability at close distances (100 m) in the whole analysed 
period. It is also very interesting to note that for larger buffer 
sizes (300 and 500 m) the average green space availability was 
very similar for the low and high SES classes between 1984 and 
1996, and the difference increase in the 2000 to 2018 period.  
 
Another interesting fact to note is that the average values for 
low and medium SES classes are very close in the last five 
measures (2000 - 2018) for all buffer sizes, which indicates that 
the disparity between those two classes has been decreasing. 
But the difference between low and medium SES classes with 
regard to the high SES class remains in that period and it is 
higher at smaller distances. The difference in green space 
availability between the high SES class and the other two SES 
classes increased between 1996 and 2015, and it is decreasing 
again to 2018. 
 
The latter is an important finding as it points out the 
environmental justice in Medellin with regard to the availability 
of urban green spaces remains, although it is decreasing in 
recent years. And that the closer urban environment for low and 
medium SES classes has way less green space availability than 
the high SES class, which is important because regarding the 
health benefits of urban green spaces, the closer the better 
(Ward Thompson et al., 2012; Wood et al., 2017; Coppel and 
Wüstemann, 2017). 
 
The temporal plot for the 500 m buffer shows that the average 
green space availability at that distance was the highest for the 
low SES class in the period from 1984 to 1996, and then the 
trend got reversed. That could be the effect of the urban 
densification without good planning practices, as most of the 
low SES areas of the city have grown led by self-build 
processes in informal settlements, not leaving space for public 
squares and parks, or even for planting trees and shrubs in the 
streets. 
 

5. CONCLUSSIONS 

The results of this work are informative for urban planners, 
decision makers and local authorities interested in the interplay 
between public health, wellbeing, and the built environment in 
the city. They show that the disparities with regard to the 
availability of urban green spaces by different SES class 
increased in Medellin city from 1984 to 2010, and although it is 
slightly decreasing in the later years, more efforts are needed to 
reduce the disparities in green space availability (and its 
benefits) between different SES classes. 
 
The analysis also shows that for the low SES class, the 
availability of green spaces has decreased more between 1984 
and 2010 than for the other two SES classes, maybe as a result 
of urban densification in those areas. The data shows a 
reversing trend in the last years which means that the several 
planning tools, like the city master plan and several integrated 
urban projects, all put in place after 2000, are in effect helping 
to improve that situation. 
 
This work has demonstrated the usefulness of open geospatial 
data, in particular the Landsat Archive, and open software tools 
for analysing long-term availability of urban green space in a 
Latin American city (Medellin, Colombia) and by different SES 
groups. Showing this kind of analysis based on open tools is 
essential as it opens the possibility for replicating it in other 
cities with scarce budgets. Given that this approach is not very 

sophisticated, at least statistically speaking, it could even 
empower citizens and some interest groups to better understand 
what is happening in their cities to demand proper action from 
their local authorities. 
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