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ABSTRACT: 

 

Orbital images have been increasingly refined spatially as spectrally as that is the case with those provided by satellite Earth 

observation WorldView-3 used in this paper. However, the images are very susceptible to noise interference, so it is difficult to 

identify and characterize objects. Therefore, it is essential to use techniques to minimize them. Thus, through increasingly innovative 

processing, it is possible to carry out detailed characterization mainly of urban areas. This work aims to perform the classification of 

images Worldview-3 using the advanced methods of classification Random Forest and Deep Learning for the region of Botafogo in 

the municipality of Rio de Janeiro, Brazil. Such classifications were performed for four different data sets, including the spectral 

bands and transformations (MNF and PCA) resulting from the original images. The results demonstrate that the use of 

transformations resulting from the original images as input data for the extraction of attributes in conjunction with the spectral bands 

improves the accuracy of the classifications generated by the Random Forest and Deep Learning method. 
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1. INTRODUCTION 

Currently, there is a strong demand for remote sensing, 

especially for orbital images that have been increasingly 

enhanced by the market due to agile product and information 

security. This improvement is of interest to public and private 

companies, which are developing several projects aimed at 

mapping and monitoring the Earth's surface. Therefore, image 

classification, which is a strand of digital processing, is used for 

the development of these projects. 

 

Image classification in remote sensing is the extraction of 

information through spectral data for recognition of 

homogeneous patterns and objects whose objective is the 

mapping of the land surface area of interest (Lock, Kirchner, 

1997). The final result of this procedure is a thematic image, 

which is a map where the classified pixels are represented by 

graphic symbols or colors, which are defined by the operator.  

The advanced classification algorithms Random Forest (RF) 

and Deep Learning (DL) are usually used for the classification. 

 

The Random Forest algorithm proposed by (Breiman, 2001), 

consists of a decision tree type aggregation technique, 

constructed in a way that its structure is composed randomly. 

To determine the class of an instance, the method combines the 

outcome of multiple decision trees through a voting mechanism. 

In the end, each tree gives a rating or a vote for a class. The 

final rating is given by the label that received the most votes 

among all trees in the forest (Diniz et al., 2013). 

 

The Deep Learning algorithm is characterized by (Ponti & 

Costa, 2017) as state-of-the-art in many machine-solving 

problems, in classification problems. It is an emerging theme 

within the field of artificial intelligence, which uses neural 

networks to improve processing results. 

 

The difficulty found in using the Deep Learning method for 

image classification is the number of samples that should be 

collected because many times the minimum value is not 

achieved for all classes due to the variety of classes. 

This learning uses deep layers of mathematical neurons to 

process data, so the information is passed through each layer in 

a way that the output of the previous one provides the input to 

the next. It is also emphasized that each of these layers is a 

simple and uniform algorithm containing an activation function 

type (Data Science Academy, 2019). 

 

According to (INPE, 2019) the use of multispectral images is a 

valuable technique for extracting data intended for various 

research applications mainly of natural resources. Also, 

obtaining spectral information recorded by the systems in the 

different parts of the electromagnetic spectrum, aiming at the 

identification and discrimination of targets of interest depends 

mainly on the quality of data representation contained in the 

images. 

 

However, even with the wealth of information of the data from 

multispectral sensors, it is necessary to consider the precise 

information, both in the characterization and in the 

quantification, so the extraction of image attributes is carried 

out. According to (Anjos, et al., 2017), this procedure aims to 

extract information from the dataset. These attributes are used in 

the classification process, since the classifiers work as data 

miners, identifying, in the middle of a wide set of inputs which 

attributes are necessary to determine the separation between the 

classes. 

 

From this, characteristic extraction operations with specific 

purposes of processing multispectral spectral sensing 
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information are combined, so that various aspects are explored. 

Therefore, different resource extraction strategies are combined, 

such as principal component analysis (PCA) and minimum 

noise fraction (MNF), so that it improves the performance of 

resource extraction approaches in the evaluated classification.  

 

Aiming at the efficient separation between classes, this article 

aims to analyze the influence of MNF and PCA transformations 

on the quality of WorldView-3 multispectral image 

classifications, through Random Forest and Deep Learning 

classifiers. 

 

2. WORDVIEW-3 IMAGE 

The scene used in this research was acquired on May 2, 2016, 

corresponding to a sample of the WorldView-3 satellite over the 

neighborhood of Botafogo in the city of Rio de Janeiro (Figure 

1). This image has been released for free by the Digital Globe 

platform.  

 

It has a spatial resolution of 1.24 meters, 8 spectral bands 

(coastal, blue, green, yellow, red, infrared, NIR-1, NIR-2) with 

circular, heliosynchronous, descending orbit, 45º inclination, 97 

minutes period and altitude of 617 Km. 

 

 
Figure 1. WorldView-3 image of study area 6R4G3B. 

 

3. METHODOLOGICAL PROCEDURES  

Figure 2 presents a summary of the methodology used in this 

work. 

 

To perform the preprocessing was used in Envi 5.3 software. At 

first radiometric calibration was performed for radiance and 

then atmospheric correction using the tool FLAASH (Fast Line-

of-sight Atmospheric Analysis of Spectral Hypercubes). 

The next step was Feature Extraction to generate information 

from the original dataset. Main Component Analysis (PCA) and 

Minimum Noise Fraction (MNF) were extracted. 

 

The Envi 5.3 software was used to perform the pre-processing. 

At first, radiometric calibration was performed for radiation and 

then atmospheric correction using the FLAASH (Fast Line-of-

sight Atmospheric Analysis of Spectral Hypercubes) tool. The 

next step was Feature Extraction to generate information from 

the original dataset. Principal Component Analysis (PCA) and 

Minimum Noise Fraction (MNF) were extracted. 

 

Due to the success in the first steps, the Trimble's eCognition  

data collection. It was used the Multiresolution Segmentation 

method, which aims to partition the image into homogeneous 

segments that present different dimensions arranged at different 

levels of intercommunicative segmentation with each other.  

 

 
Figure 2. Methodological Procedures. 

 

Multi-resolution segmentation allows small objects to be 

properly analyzed at a thinner resolution, while larger objects 

can be properly manipulated at a coarser resolution (Anjos, 

2016). After multiresolution segmentation, it was also used the 

Spectral Difference algorithm, which aims to refine the 

targeting results through spectral similarity between 

neighboring segments.  The following parameters were used for 

segmentation: scale, shape, compactness, weight and spectral 

difference that are presented in table 1. 

 

The scale parameter is assigned to obtain the average size of the 

segments, similarly, the influence of the shape on the degree of 

segmentation is observed when compared to the color. 

Compactness is the ratio of the length of the edge of a segment 

to the total number of pixels. Finally, the weight parameter must 

be assigned to the images according to their degree of 

importance in the segmentation process (varies from 0 to 1). 

 

As a result, an image with small segments was obtained, but it 

is in accordance with the details of the scene in question. 

 

Segmentation Parameters 

Scale 25 

Shape 0.7 

Compactness 0.5 

Image Layer Weights 
1 (spectral bands) 

0 (MNF and PCA) 

Spectral Difference 350 

Table 1. Segmentation Parameters 
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The next step to perform the classification was the manipulation 

of the CSV files in the Weka software, where the files were 

converted to the ARFF format to proceed in the final steps.  

Data exported from eCognition has been separated into four 

different datasets: 

 

• Dataset 1 containing only information from spectral 

bands;  

• Dataset 2 containing information derived from 

spectral bands and MNF;  

• Dataset 3 containing information derived from 

spectral bands and PCA;  

• Dataset 4 containing the information resulting from 

the spectral bands, MNF and PCA. 

 

From this, we started the procedure for the classification of 

datasets in the WEKA software, using the Random Forest and 

Deep Learning algorithms to make the comparison.  

 

Eight classifications were generated considering the four 

datasets and the two classification methods (RF and DL).  

Besides, in the WEKA software, the eight Confusion Matrix 

were generated through which the Overall Accuracy and Kappa 

Index were calculated.  

 

It is necessary to validate the stability of the machine learning 

model whose objective is to guarantee the best data standards, 

that is without its low bias and variance. Generally, an error 

estimate for the model is made after training, better known as 

waste assessment.  

 

In this process, a numerical estimate of the difference in the 

predicted and original responses is made, also called training 

error. However, this provides only an idea of the model's 

performance in the data used to train it. Thus, there is a 

possibility that the model is insufficiently adjusting the data. 

Therefore, the problem with this evaluation technique is that 

there is no indication of the generalization of the independent 

dataset, which becomes known as cross-validation (Gupta, 

2017).  

 

Thus, to verify the data generated, we used the Weka software 

to use cross-validation, adjusting parameter values in the 

classification methods. The Kappa index tables, global accuracy 

and the confusion matrix are included for evaluation. 

 

The classifications were visualized in the QGIS 3.6.1 software. 

in the shapefile format with the categorization of the classes 

defined by the classifiers that allowed the visual comparison 

between all datasets. 

 

The colors defined to represent each of the 13 most relevant 

classes in all eight classifications are shown in Figure 3. 

 

 Arboreal Vegetation  Rock 

 Asphalt  Sand 

 Boat  Shade 

 Cemitery  Short Vegetation 

 Edifications  Slum 

 Bare Soil  Swimming Pool 

 Ocean   

Figure 3. Colors determined to represent the 13 classes. 

 

4. RANDOM FOREST CLASSIFICATION 

Four classifications were generated with the Random Forest 

algorithm considering the four datasets. 

Figure 4 shows the RF classification for dataset 1, which uses 

only spectral bands. 
 

Analyzing the RF classification dataset 1 (figure 4) and also 

through the analysis of the data obtained with the classification, 

it is possible to perceive the confusion between classes, and 

boats, cemetery, edifications and slum have similarity between 

the spectral signatures, as they are constructed with the same 

material.  

 

In addition, misconceptions are observed with the sand, rock, 

bare soil and shade classes. This can be justified by shape 

assignments, colors, and other decision-influencing patterns for 

classification. 

 

 
Figure 4. RF Classification for dataset 1. 

 

Figure 5 shows the RF classification for dataset 2, which uses 

spectral bands and MNF. 
 

 
Figure 5. RF Classification for the dataset 2. 

 

Figure 6 shows the RF classification for dataset 3, which uses 

spectral bands and PCA. 
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Figure 6. RF Classification for the dataset 3. 

 

Figure 7 shows the RF classification for dataset 4, which uses 

spectral bands, MNF and PCA. 

 

 
Figure 7. RF Classification for the dataset 4. 

 

Visual analysis of the results showed no significant differences. 

Overall Accuracy and Kappa Index values are presented in 

Table 2. 

 

Dataset 
Overall 

Accuracy 
Kappa Index 

1 73.55% 0.71 

2 78.75% 0.76 

3 78.71% 0.76 

4 79.51% 0.77 

Table 2. Results of Random Forest Classification. 

 

Analyzing the RF classification dataset 1 (figure 4) and also 

through the analysis of the data obtained with the classification, 

it is possible to perceive the confusion among classes. Boats, 

cemetery, edifications, and slum have similarity between the 

spectral signatures since they are built with the same material. 

Also, misconceptions are observed with the sand, rock, bare soil 

and shade classes. This can be justified by shape assignments, 

colors, and other decision-influencing patterns for classification. 

The same confusion continues in RF classification for datasets 2 

and 3 (Figures 5 and 6), however with a smaller distribution 

analyzed in Figure 4. 

This fact can be explained due to a small correlation between 

bands, without any Random Forest algorithm, according to 

(Anjos, 2016) works with a large collection of uncorrelated 

decision trees. Thus, from the original training samples, 

different random sample sets are created, as many sets as 

decision trees to allow independent trees to be created. 

 

The result is based on the classification of each tree for a given 

object called a vote (Anjos, 2016). Therefore, the random forest 

gets a class vote from each tree and classifies each instance 

using the most votes. 

Figures 4, 6 and 7 showed confusion between the sand and bare 

classes. This is because the materials have the same 

composition, which often differ only by granulometry (grain 

size). 

It should be borne in mind that the reason for the confusion 

among classifications is due to the detail in a large number of 

classes and the similarity between the materials composed by 

each class chosen.  

 

Note that the insertion of PCA and MNF attributes separately 

(datasets 2 and 3) improve the quality of the classification 

compared to that performed by dataset 1.  

However, the difference between the results of datasets 2 and 3 

is not significant. 

 

Inserting the PCA and MNF attributes together (dataset 4) 

results in the best validation indexes (Overall Accuracy and 

Kappa Index) when compared to all other datasets. 

 

5. DEEP LEARNING CLASSIFICATION 

Four classifications were generated with the Deep Learning 

algorithm considering the four datasets. 

 

Figures 8, 9, 10, and 11 show the DL classifications 

respectively for datasets 1, 2, 3, and 4. 

 

 
Figure 8. DL Classification for dataset 1. 

 

The visual analysis of the results shows no significant 

differences. Overall Accuracy and Kappa Index values are 

shown in Table 3. 

 

The classification using the Deep Learning algorithm showed 

significant confusion between the classes. This is due to the 

small number of samples collected since there is a need for data 

immensity to perform processing by this method. It is common 
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to use this type of tool for learning in large amounts of data (Big 

Data). 

 

 
Figure 9. DL Classification for the dataset 2. 

 

 
Figure 10. DL Classification for the dataset 3. 

 

 
Figure 11. DL Classification for the dataset 4. 

 

When analyzing figures 8, 9, 10 and 11, confusion scans, such 

as building areas that were classified as boats. Such confusions 

occur due to the similarity of the material used or even the color 

of the objects. To occur a significant separation, it would be 

ideal to collect a larger number of samples, but this would only 

be possible in a pixel-by-pixel approach, which could cause 

other problems in classifications such as salt and pepper noise. 

 

The rocks are another class that showed confusion in the 

execution of Deep Learning presented in figures 8, 10 and 11 

because the material is dispersed in areas near low vegetation, 

characterizing it as well as bare earth, since it has similarities in 

the response spectral.  

 

In addition, just as in RF, the Deep Learning algorithm 

presented notable misunderstandings between the rock and sand 

classes. This can be justified by the training process, as they are 

derivable materials. Thus, (Chaves, 2019) this explains that the 

sand is formed from the dismantling of the rocks of some 

nearby mountain range, which usually takes millions of years to 

degrade. It adds that the geographical origin of the material may 

be in a mountain range a few meters/kilometers from the beach, 

as is the case with Botafogo beach in the municipality of Rio de 

Janeiro 

 

Compared to Random Forest, Deep Learning has confused 

darker regions such as the surrounding buildings and the ocean. 

These can be seen in figure 8, classified as shadow due to the 

coloration presented in the region. 

 

Note that the insertion of PCA and MNF attributes separately 

(datasets 2 and 3) significantly improves the quality of the 

classification compared to that performed by dataset 1. 

Furthermore, the insertion of the PCA and MNF attributes 

together (dataset 4) results in the best validation indexes 

(Overall Accuracy and Kappa Index) when compared to all 

other datasets. 

 

Dataset 
Overall 

Accuracy 
Kappa Index 

1 54.06% 0.49 

2 61.78 % 0.58 

3 62.06% 0.58 

4 62.86% 0.59 

Table 3. Results of Deep Learning Classification. 

 

6. CONCLUSIONS 

From the results generated by the classification of the images by 

the advanced classifiers Random Forest and Deep Learning, it is 

observed that the greater the number of attributes, the better the 

result. 

 

In the case of this work, from Overall Accuracy, it can be 

noticed a better classification based on the image set which 

includes spectral bands, MNF and PCA for both the Random 

Forest and Deep Learning algorithms. 

 

(Zortea et al., 2004) agree with the results obtained by stating 

that in a classification process, accuracy typically increases as 

they have additional information. However, the authors are 

concerned about the fact that the accuracy of the classifier can 

reach a maximum value at a certain point, and decrease with the 

introduction of additional bands. This is the well-known 

phenomenon of Hughes. 

 

In order to improve the quality of classifications, it is suggested 

the use of hyperspectral and LiDAR data to reduce confusion 

caused by materials that have a similar spectral signature. 
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