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ABSTRACT:

The presence of weeds in agricultural crops has been one of the problems of greatest interest in recent years as they consume natural
resources and negatively affect the agricultural process. For this purpose, a model has been implemented to segment weed in aerial
images. The proposed model relies on DeepLabv3 architecture trained upon patches extracted from high-resolution aerial imagery.
The dataset employed consisted in 5 high-resolution images that describes a sugar beet agricultural field in Germany. SegNet and
U-Net architectures were selected for comparison purposes. Our results demonstrate that balancing of data, together with a greater
spatial context leads better results with DeepLabv3 achieving up to 0.89 and 0.81 in terms of AUC and F1-score, respectively.

1. INTRODUCTION

Agriculture is one of the most important activities for the eco-
nomic sector because it supplies a primary need for humankind.
For this reason, in conjunction with technology development,
there is a constant development of new techniques and studies
to improve and optimize agricultural production.

The pipeline of agricultural production is composed of the fol-
lowing processes: land preparation, planting, irrigation, fertil-
ization, and collection, among others. These processes involve
large investments in terms of natural and economic resources.
Frequently, these investments do not return the expected assets
due to different factors like pests, diseases, extreme weather
conditions, and the presence of weeds (i.e. plants considered
undesirable in a particular condition). Weeds are plants un-
wanted in human-controlled settings that consume important
natural resources from other crops affecting their development.

The use of Unmanned Aerial Vehicles (UAVs) in the agricul-
tural sector has increased in recent years due to its versatility
in areas of difficult access, low cost and ease of capturing in-
formation from large areas of land, thanks to the advance of
the systems of data collection (Bu et al., 2017). UAVs are be-
ing employed for monitoring crops’ development (Shakhatreh
et al., 2019), pests/diseases detection (Lim et al., 2018), weeds
localization (Sa et al., 2018a), detection of plants (Pignatti et
al., 2019), among others. For these purposes, passive and active
sensors are mounted on UAVs to capture spectral and structural
information from agricultural fields. For instance, Infrared (IR)
cameras capture the range of the electromagnetic spectrum (i.e.
Red edge and near-IR) that is more sensitive to the chlorophyll
content of plants. Based on this information, weeds can be loc-
ated in aerial images using semantic segmentation techniques.

Semantic segmentation is the task of assigning a label with se-
mantic meaning to each pixel in an image. Deep Learning (DL)
based approaches for semantic segmentation have been achiev-
ing the state-of-the-art during the last years due to its potential
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to learn representative features exploiting contextual informa-
tion. In addition, DL approaches have been employed for agri-
cultural applications to monitor crops, detect pests, or even to
estimate agricultural production.

(Sa et al., 2018b) studied the influence of the dataset employed
by the comparison of the results of models trained upon only
R, G, B bands, and R, G, B, NIR, CIR, and NDVI. The authors
concluded that having information that best describes the prob-
lem will help to train models with better inference results. (Sa
et al., 2018b) and (Hinzmann et al., 2018) show how to work
with a dataset with images of high-resolution and coarse resol-
ution, proposing the use of SegNet architecture and Inception
modules.

The remainder parts of this work are organized as follows. Sec-
tion 2 describes the theoretical fundamentals of the architec-
tures employed in this work. Section 3 explains the methodo-
logy used in our study, Section 4 shows the experimental pro-
tocol followed in our experiments as well as the results obtained
for each of the architectures. Finally, Section 5 summarizes
the conclusions extracted from all experiments that were car-
ried out.

2. THEORETICAL FOUNDATIONS

2.1 SegNet

Proposed by the University of Cambridge, SegNet is a deep
encoder-decoder architecture (see Figure 1) for multi-class
dense (pixel-wise) semantic segmentation. The encoder stage
contains 13 convolutional layers taken from the VGG16 archi-
tecture (Simonyan, Zisserman, 2014). These layers consist of
a sequence of convolutional and pooling layers with the aim of
extracting characteristics while reducing the size of the feature
map (Badrinarayanan et al., 2017). The decoder stage reuses
pooling indices obtained in the max-pooling layers, removing
the need for learning in the upsample stage. For this reason,
SegNet is considered more efficient than other networks as it
requires less computational resources.
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Figure 1. SegNet architecture (taken from (Badrinarayanan et
al., 2017)).

2.2 U-Net

Proposed in 2015 by the University of Freiburg in Germany, the
U-Net is a fully convolutional network with an encoder-decoder
architecture with skip connections (see Figure 2). These skip
connections are employed during the pooling operation where
pooling indices are saved for being used later. In the encoder
stage, the feature maps are extracted, using blocks of convo-
lutional layers with no-padding and max-pooling layers with
stride 2 for downsampling. The decoder stage is symmetric
to the expanding stage. This returns precise localization using
transposed convolutions. This architecture only contains con-
volutional layers without any dense layer, accepting images of
any size (Ronneberger et al., 2015, Lin et al., 2017).
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Figure 2. U-net architecture (modified from (Hu et al., 2018)).

2.3 DeepLabv3

Presented by Google, DeepLabv3 architecture has stood out for
its innovation in the convolution process by considering dilated
convolution, also known as atrous convolution.

Input tile

Output tile

Figure 3. Deeplab arquitecture (taken from (Chen et al., 2018)).

Then, DeepLabv3 captures contextual information at multiple
scales using parallel atrous convolutions with different dila-
tion rates (Chen et al., 2018). Fig 3 shows Deeplab v3 ar-

chitecture, describing the processes considered in the encoder-
decoder stage.

3. METHODOLOGY

The methodology employed in this work for weed detection is
summarized in Figure 4. There are two main phases: training,
where the model learns how to recognize the classes of interest,
and testing, where the model performs inference over samples
never seen during training.
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Figure 4. Methodology.

In both phases, training and testing, it is necessary to perform a
pre-processing to the input images as they are too big leading to
an excessive computational cost as well as a high consumption
of resources. For this reason, patches are extracted from each
image and its reference with certain overlapping, also known as
stride (see Figure 5).

Stride

Patch size

Figure 5. Patch extraction with certain size and overlapping, also
known as stride.

Once the patches are extracted, the semantic segmentation
model is trained upon tuples of patches and their references.
This step can be executed many times varying model’s hyper-
parameters in pursuance of improving model’s accuracy. Then,
during testing, inference, with the trained model, is performed
over images that were not employed during training. Finally,
all outputs are joint to reconstruct the entire image as it was di-
vided into patches. For this purpose, it is necessary to save the
key of each patch to facilitate its location during the reconstruc-
tion step.

4. EXPERIMENTAL ANALYSIS

4.1 Dataset

The dataset corresponds to a sugar beet agricultural field. It
comprises a total of 5 aerial images (see detailed description in
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Table 1) captured by a drone (Sa et al., 2018b). The dataset also
contains tiles extracted from the images, with a size of 480 ×
360.

Camera RedEdge-M

Image Name 000 001 002 003 004

Width 5995 4867 6403 5470 4319

Height 5854 5574 6405 5995 4506

Area Covered (ha) 0.312 0.1108 0.2096 0.1303 0.1307

GSD (cm) 1.04 0.94 0.96 0.99 1.07

Tile Resolution
(row/col) pixels

360 × 480

# tiles 221 176 252 204 117

Protocol 1 train train train test train

Protocol 2 train train train test test
# channels 5

Crop Sugar beet

Table 1. Description of the dataset employed in the experiments.
Modified from (Sa et al., 2018b).

This dataset provides R, G, B and NIR (Near-Infrared) bands,
as well as CIR (Color-Infrared) and NDVI (Normalized Dif-
ference Vegetation Index) images. CIR image is composed by
stacking the R, G, and NIR bands. NDVI is computed following
the Equation 1.

NDV I =
NIR−R

NIR+R
(1)

where R and NIR refer to the Red and Near-Infrared bands re-
spectively.

4.2 Experimental Protocol

The aforementioned methodology in Section 3 have been ap-
plied for semantic segmentation using the selected dataset ac-
cording to the following protocols:

Protocol 1

This protocol is similar to the one employed by (Sa et
al., 2018b). For training, patches extracted from images
{000, 001, 002, 004} and its corresponding references were em-
ployed (see Table 1 for more details). Then, inference was per-
formed over patches extracted from image {003}.

Protocol 2

This protocol was considered to simulate an scenario with less
labeled samples than in Protocol 1. In this case, only images
{000, 001, 002} were employed for training and the remainder
ones, {003, 004} for inference.

4.3 Experimental Setup

For Protocol 1, patches of size 480 × 360 without overlapping
were employed to train all architectures: SegNet, U-Net and
DeepLabV3. For Protocol 2, patches of size 512 × 512 with an
overlapping of 30% were extracted from the original images in
the dataset to train only DeepLabV3.

A set of experiments were carried out varying the hyper-
parameters of each architecture during training. The best para-
meter setup obtained in our experiments was the following:

Adam optimizer with a learning rate of 10−3 and weight de-
cay of 10−5 during 50 epochs and early stop to break after 8
epochs without improvement. For validation purposes, 25% of
the training patches were selected. During training, we mon-
itor the mean IoU (intersection over union) over the validation
set. All models are trained on data augmented using random
rotations of 30◦, vertical and horizontal flips. As the dataset
is highly unbalanced, weights proportional to class frequencies
at pixel level were considered in the loss function to penalize
errors in classes with less samples.

4.4 Quantitative Assessment

The results obtained in our experiments are evaluated in terms
of F1-score and AUC (area under the ROC curve).

F1-score is defined as the harmonic mean between Precision
and Recall (see Equation 2) and varies from 0 to 1. Preci-
sion and Recall are computed as in Equation 3 and Equation
4, where true positives (TP) are results in which the model
correctly infers the reference, false positive (FP) are those res-
ults incorrectly predicted and false negative (FN) are results in
which the model incorrectly predicts a another class.

The metric AUC describes the relation between the true posit-
ives rate and the false positives rate.

F1score =
Precision×Recall

Precision+Recall
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

4.5 Results

Table 2 and Table 3 summarize the results obtained by both
protocols in terms of AUC and F1-score metrics, respectively.

As in (Sa et al., 2018b), the Protocol 1 takes patches of 480 ×
360 without stride. Table 2 shows the metric AUC obtained for
all architectures, and table 3 the F1-score.

AUC

Models Channels Size Protocol Weed Crop Background

SegNet 7 480 × 360 1 0.72 0.81 0.85

DeepLabv3 7 480 × 360 1 0.83 0.89 0.92
U-Net 7 480 × 360 1 0.66 0.77 0.72

DeepLabv3 7 512 × 512 2 0.67 0.79 0.80

Table 2. AUC score per class obtained in the experiments for
both protocols.

F1-score

Models Channels Size Protocol Weed Crop Background

SegNet 7 480 × 360 1 0.56 0.74 0.85

DeepLabv3 7 480 × 360 1 0.78 0.81 0.92
U-Net 7 480 × 360 1 0.62 0.70 0.97

DeepLabv3 7 512 × 512 2 0.59 0.73 0.86

Table 3. F1-score per class obtained in the experiments for both
protocols.
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DeepLabv3
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DeepLabv3
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Figure 6. Snips of the classification Maps obtained in the experiments. From left to right: Reference, SegNet (Protocol 1), DeepLabv3
(Protocol 1) and DeepLabv3 (Protocol 2).

In both tables, the highest accuracies are in bold. DeepLabv3
model achieved the highest accuracy because it considers At-
rous convolution, having multi-scale feature maps. However,
U-Net has a good response in critical areas but classify erro-
neously more pixels of crops. Figure 6 illustrates this beha-
viour.

U-Net presents a good response compared to SegNet, because
the U-Net architecture takes weights in the corners, identifying
very small object with short separations. Consequently, when
considering this, it was evident that the model obtained by train-
ing the U-Net with the R, G, B channels presented a low per-
formance compared to the U-Net trained upon all 7 channels.
The main reason is related to the usage of NDVI channel, which
contains information of great relevance regarding the crop, de-
scribing a reflectance index for each component in the agricul-
tural field.

Weed is represented in small regions of our data, being repres-

ented by small amounts of pixels. DeepLabv3 architecture was
able to correctly classify it due to its multiscale atrous convolu-
tion representations.

From Protocol 1, it was concluded that DeepLabv3 showed a
better behaviour, for this reason it was considered to increase
the context of our dataset with the aim of improving the model.
In Protocol 2, patches of 512× 512 with an stride of 30 % were
extracted, considering much more spatial context. In this sense,
the model obtained presented a considerable improvement, hav-
ing a better performance in critical areas.

Fig 6 shows the classification maps obtained for all models fol-
lowing Protocols 1 and 2. Notice the better results obtained
by DeepLabv3 architecture, observing a better performance in
some scenarios.

In Protocol 2 the distribution of the agricultural changes with
respect to training and test was changed, because considering
only one image caused a bias regarding the behavior of the
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model against a real situation. It was evident in Table 3, The
results from Protocol 2 presented a behavior a bit different from
the one following Protocol 1 for the image {003}, especially in
areas where weed was the major class.

5. CONCLUSIONS

A comparison between three different architectures for Se-
mantic Segmentation have been performed in this work. The
architectures studied in this work are: SegNet, U-Net and Dee-
pLabv3. DeepLabv3 achieved the highest accuracies with val-
ues of up to 0.89 and 0.81 in terms of AUC and F1-score, re-
spectively.

It was observed that the spatial context factor allows to obtain
better models. Patches with bigger sizes will affect computa-
tionally in training, so it should be considered a patch size that
provides an optimal context being computationally approach-
able.

The difference in the computational resource was evident, us-
ing the architectures, SegNet, U-Net and DeepLabv3, the latter
being the one that needs the most computational resources. For
this reason it is to be considered that it is up to the computa-
tional resources to select one or another model. Thus, U-Net
architecture using patch size 480×360 was the one that most fit
in the relation of computational resource vs results obtained by
the model.

It was considered that it is better to have more samples regard-
ing the problem during training. This is because the agricultural
fields may have different morphologies, during the cultivation
stage, having large regions where the crop is not present.
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Sa, I., Popović, M., Khanna, R., Chen, Z., Lottes, P., Liebisch,
F., Nieto, J., Stachniss, C., Walter, A., Siegwart, R., 2018b.
Weedmap: a large-scale semantic weed mapping framework
using aerial multispectral imaging and deep neural network
for precision farming. Remote Sensing, 10(9), 1423.

Shakhatreh, H., Sawalmeh, A. H., Al-Fuqaha, A., Dou, Z., Al-
maita, E., Khalil, I., Othman, N. S., Khreishah, A., Guizani,
M., 2019. Unmanned Aerial Vehicles (UAVs): A Survey on
Civil Applications and Key Research Challenges. IEEE Ac-
cess, 7, 48572-48634.

Simonyan, K., Zisserman, A., 2014. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556.

Revised February 2020

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W12-2020, 2020 
2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS 2020), 22–26 March 2020, Santiago, Chile

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-551-2020 | © Authors 2020. CC BY 4.0 License. 

Primary publication at IEEE Xplore: https://doi.org/10.1109/LAGIRS48042.2020.9165562

 
 

555




