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ABSTRACT:  

Evapotranspiration (ET) is one of the least understood components of the hydrological cycle. Its application is varied, from agricultural, 
ecological and hydrological monitoring, to control of the evolution of climate change. The goal of this work was to analyze the 
influence that uncertainties in the estimate of Land Surface Temperature (LST) can cause on ET estimates by S-SEBI model in Pampa 
Biome area. The results indicate that the daily evapotranspiration is higher when the pixel LST is lower, which also shows the influence 
of land use on the variability of ET. They also demonstrated the importance of LST's accuracy in the selection of the driest and wettest 
pixels in applying S-SEBI model, because when there are uncertainties in estimates of LST, the errors in the estimates of the energy 
components multiply. The Pampa Biome native grass crops have lower Latent Heat Flux (LET) than other land uses, with higher values 
of LET during the spring-summer period when compared to autumn-winter.         

 

1. INTRODUCTION 

The physical, chemical and biological processes responsible for 
life on Earth depend practically on solar energy. Monitoring 
energy and soil-vegetation-atmosphere mass transfers is a key 
step in the management of water and agricultural resources. It is 
also useful for a better understanding and prediction of climate 
evolution (Olioso et al., 1999). 

Physically, the energy balance is obtained by determining the 
magnitude of radioactive and non-radiative fluxes. The radiation 
balance of the radiative fluxes represents the energy absorbed by 
the system. Its magnitude is shared by the energy used in the 
evaporation of water latent heat flux (LE), or evapotranspiration 
on vegetated surfaces, sensible heat flux (H) and soil heat flux 
(G). 

Land surface temperature (LST) is one of the sources of input 
data for modelling land surface processes, such as actual and 
potential evapotranspiration (ET) or net radiation flux, that are a 
critical component of many agricultural and ecological studies 
(Courault et al., 2005; Cristóbal et al., 2018; Rubert et al., 2018; 
Sobrino et al., 2005). 

In this way, ET is one of the least understood components of the 
hydrological cycle, it is estimated that 60% of the precipitated 
water returns to the atmosphere through evapotranspiration (Oki 
and Kanae, 2006). In the Pampa biome the estimate of Latent 
Heat Flux (LET) by eddy-covariance was assessed seasonally by 
Rubert et al., (2018) in two different study areas with the same 
native vegetation cover, but with different soil types. The authors 
concluded that 65% of the available energy was used for 

evapotranspiration and, even with the differences in soil 
moisture, there was no apparent distinction in energy partition in 
the two study areas.  

Conventional measurements of ET have limited application 
because they are not spatially representative and because of the 
dynamic’s nature of heat transfer processes. Therefore, remote 
sensing analyses could be an alternative to solve these problems 
by different methods. The S-SEBI model estimates 
evapotranspiration from the relationship between LST and 
albedo, since it calculates the evaporative fraction by defining the 
temperatures in drier and wetter regions. Therefore, the 
estimation of LST is an important step for the proper functioning 
of this model.  

The main objective of this work was to analyze the influence that 
the uncertainties in the estimate of LST can cause on ET 
estimates by S-SEBI model. 

1.1 Study area 

The Pampa biome is considered by the Ministério do Meio 
Ambiente (MMA/Brazil) as one of the most important temperate 
field areas on the planet. In South America, this biome extends 
over an area of approximately 750,000 km², shared by Brazil, 
Uruguay and Argentina. In Brazil, this biome is restricted to 63% 
ofthe State of Rio Grande do Sul (RS) and represents 2.07% of 
the national territory. 

From the point of view of biodiversity and environmental 
services, the fields are a fodder source for cattle ranching, shelter 
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diversity of plant and animal species, and ensure the conservation 
of water resources (Overbeck et al., 2006). In addition, they 
control soil erosion and carbon sequestration that mitigate 
climate change. 

The experimental site in Pampa biome is in the experimental area 
of the Federal University of Santa Maria (UFSM), covering 24 
ha of natural vegetation (native grassland). There is a tower flux 
located in the study area, under the responsibility of the 
Micrometeorology Laboratory of UFSM, which provided some 
important variables used in this work (Figure 1). 

Figure 1. American Pampa Biome and Tower Flux location 

This study area is part of the International Long Term Ecological 
Research (ILTER) network and is used for experiments of the 
Federal University of Santa Maria in several areas of knowledge, 
mainly focused on the morphology of native species for livestock 
production (Confortin et al., 2017; Oliveira et al., 2015).   

 

2. METHODOLOGY 

2.1 Materials 

Five images from Landsat 8 were acquired, for the year 2018, and 
treated with geometric rectification and clipped using a study 
area border. Radiometric calibration and atmospheric correction 
procedures were conducted to ensure that the change detection 
analyzes truly detected changes at the Earth’s surface rather than 
at the sensor level, solar illumination differences, and potential 
differences in atmospheric conditions.   

From the tower flux we have been acquired the global incident 
solar radiation (Rg) and the incident atmospheric radiation over 
the spectral domain (Ra), obtained with the satellite overpass 
(Table 1). 

Acquisition 
Date 

Season DOY 
Global 

Radiation 
(Rg) 

Incident 
atmospheric 

radiation 
(Ra) 

16 Dec 
2018 

Spring 349 916.7 508.54 

26 Aug 
2018 

Winter 237 670.05 399.63 

07 Jun 2018 Autumn 157 483.14 394.00 

04 Apr 
2018 

Autumn 93 414.85 437.9 

15 Feb 2018 Summer 45 838.31 474.02 
Table 1. Satellite Landsat 8 OLI/TIRS data and meteorological 

information (Rg and Ra) from the tower flux by each day of 
year (DOY) used in this work 

2.2 Methods 

To estimate the balance energy by remote sensing models some 
pre-processing of image data are needed and some indices had to 
be calculated. Table 2 shows the algorithms used to calculate 
Normalized Difference Vegetation Index (NDVI), Albedo (α), 
Soil Heat Flux (G), Land Surface Temperature (LST) and Land 
Surface Emissivity (LSE).  

Where: 

(¹) ρNIR and ρRED are calculated using Landsat 8 channel 5 
(0.86) and channel 4 (0.65); 

(2) Ti and Tj are the at-sensor brightness temperatures at the SW 
bands i and j (in kelvins), ε is the mean emissivity, ε = 0.5 (εi + 
εj), Δε is the emissivity difference, Δε = (εi − εj), w is the total 
atmospheric water vapor content (in g/cm−2), and c0 to c6 are 
the Split Window (SW) coefficients to be determined from 
simulated data. 

We used S-SEBI model proposed by (Roerink et al., 2000) to 
obtain instantaneous latent heat flux (LET) for all acquired 
images. The surface energy balance is obtained by determining 
the magnitude of the radiative and non-radiative fluxes. It is 
written as follow, when considering instantaneous condition. 

Rn= LET + G, (1) 

Where: 

Variable Equation 

NDVI 
(ρNIR – ρRED)/( ρNIR+ρRED) ; (1) 

(Rouse et al., 1973) 

Albedo (α) 
0.365b2 + 0.130b4 + 0.373b5 + 0.085b6 

+ 0.072b7 -0.0018 ; (Liang, 2000; Liang et al., 
1998). 

LSE and 
LST 

Ti – 0.268(Ti − Tj) + 1.378(Ti − Tj)2 + 
16.4 + (0.183 + 54.3w) (1 − ε) + (-2.238 - 

129.2w) Δε; (2) 

(Jimenez-Munoz et al., 2014; Sobrino et 
al., 1996) 

Soil Heat 
Flux (G) 

((Ts/ α) * (0.0038* α) + (0.0074* α ²)*(1-
0.98*NDVI4)) *Rn ; (Bastiaanssen, 2000) 

Table 2.Equations used to the pre-processing image data 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W12-2020, 2020 
2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS 2020), 22–26 March 2020, Santiago, Chile

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-67-2020 | © Authors 2020. CC BY 4.0 License. 

Primary publication at IEEE Xplore: https://doi.org/10.1109/LAGIRS48042.2020.9165570

 
 

68



 

Rn (Ԝ m -2) is the available net radiation flux,  

G (Ԝ m -2) is the soil heat flux (see Table 2),  

LET (Ԝ m -2) is the latent heat flux (both atmospheric 
convective fluxes: sensible heat flux and latent energy 
exchanges). 

Once the surface energy balance equation is discriminated, the 
Rn is calculated as the rest term of all incoming and outgoing 
shortwave (sw) and longwave (lw) radiation, as describing 
below:  

Rn = (1-α) Rg+ ε Ra –ε σ LST4, (2) 

Where: 

Rg (Ԝ m -2) is the global incident solar radiation;  

Ra ( Ԝ m -2) is the incident atmospheric radiation over the 
thermal spectral domain;  

α is the surface albedo; 

ε is the surface emissivity;  

LST  (Kelvin) is the land surface temperature;  

σ is the Steffan–Boltzmann constant (5.67 × 10− 8 Ԝ m -2 
K− 4).  

The latent heat flux (LET) depends on the evaporative 
fraction (Λ) and is given as follow. 

LET = Λ (Rn – G)  (3) 

The evaporative fraction concept (Λ) was proposed by 
(Roerink et al., 2000), adapted and tested by (Sobrino et al., 2007, 
2005), and it is described by the equation below.  

Λ = ಹ் ିௌ்

ಹ்ି ಽ்ಶ
 (4) 

Where: 

TH (K) is the temperature corresponding to dry conditions; 

TLE (K) is the temperature corresponding to wet condition. 

 

This method can be only applied when the atmospheric 
conditions are constants over the image and the study site 
includes simultaneously wet and dry areas (Roerink et al., 2000; 
Sobrino et al., 2007, 2005). Besides of that, this method works 
better in a homogeneous vegetated area - with higher variance 
between dry and wet pixels. 

 

2.2.1 Land Surface Temperature (LST):  

In order to analyze the influence that possible uncertainties in the 
estimation of LST may have on the estimates of LET, a noise was 
applied to the LST images, with a Gaussian variation of -2 K and 
+ 2 K. Many authors believe that LST retrieval precision varies 
around 1-2 K depending on the heterogeneity atmospheric 
conditions and the resolution of the sensor used in the process 
(Jimenez-Munoz et al., 2014; Skokovic et al., 2017; Sobrino and 
Skoković, 2016). 

It is important to emphasize that, with this noise, the average LST 
of the images does not vary, but the minimum and maximum 
temperatures do, as we can see in Table 3. 

DOY Average Max Max* Min Min* 

45 301.99 308.29 309.81 298.23 295.65 

93 289.59 291.15 293.82 288.9 285.511 

157 286.39 287.91 290.67 284.77 282.14 

237 288.06 291.07 293.58 284.57 282.71 

349 301.55 349.65 348.58 297.6 295.43 

Table 3. Land Surface Temperature stats of the images, without 
noise and with noise (*) 

 

3. RESULTS AND DISCUSSION 

To analyze the influence of LST on ET estimation, these 
variables were plotted on a graph with the relationship to each 
pixel of the images. The Figure 2 shows the results for DOY 349 
and 237 of 2018, where we can see that the daily 
evapotranspiration is higher when the pixel temperature is lower.  

 

 

Figure 2. Land Surface Temperature versus Evapotranspiration 
(mm/day) for a) DOY 349 and b) DOY 237 

 

Another important consideration is the LST and ET maximums, 
which in winter the LST varies between 285 K and 290 K (Figure 
2b) and in summer can reach 310 K in the warmer months, in 
Figure 2a the LST, on this December day, reaches 305 K. In this 
way, evapotranspiration in summer is twice as high as in winter, 
which is already expected. Those analyses corroborate studies 
conducted by Rubert et al., (2018), where the authors 
demonstrate the high seasonal variability of evapotranspiration, 
with higher values during the spring-summer period when 
compared to autumn-winter.         

a) 

b) 
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This behaviour can be explained by differences in air and soil 
temperatures and by the heterogeneity of land cover. For 
example, in a Forest the daily ET is higher than a Native Grass 
but the LST is higher in the second one. In Figure 3 we can 
compare these differences for Native Grassland and Forest with 
the Mean image of LET for each day. 
 

Figure 3. Latent Heat Flux (W/m²) for different land surface use 

3.1 The influence of LST on LET estimates 

In Figure 4 we can see the LET and LST for Pampa Biome at the 
tower flux site in the experimental area. The LET for all days are 
different with the noise in the land surface temperature (LST*), 
mostly during the winter, but the LST in this point does not vary. 
The most variance has occurred in DOY 157 with 164 W m-2 of 
difference between real LST and noise LST, in a Native Grass 
land use. The less variance has occurred during the summer in 
DOY 45 and 349, with 4.5 W m-2. 

 
Figure 4. Land Surface Temperature (LST) and Latent Leat 

Flux (LET) to Native Grass at Tower Flux point, with (*) and 
without a noise applied to the images 

These results demonstrate the importance of LST's accuracy in 
the selection of the driest and wettest pixels, this being the 
greatest challenge in applying this method to estimate ET.   

When there are uncertainties in estimates of LST, the errors in 
the estimates of the energy components multiply for the entire 
study area, as shown in Figure 5, even though the average LST is 
the same in both estimates, the maximum and minimum values 
are responsible for the variation in the LET estimate. In the same 
figure we can see that LST vary much more during summer 
season, however during winter season de maximum and 
minimum LST are closer.  

 
Figure 5.  Mean, Minimum and Maximum Land Surface 

Temperature (LST, Kelvin) and Latent Heat Flux (LE, W/m²) of 
images 

3.2 Application 

The use of remote sensing to estimate evapotranspiration is the 
best way to spatialize this variable and optimize hydrological 
management processes. Figure 6 demonstrates the heterogeneity 
of ET in two seasons of the year: summer (a) and winter (b). In 
the same figure we can see the higher seasonal variability that 
was discussed by Rubert et al., (2018), but spatially in space. 

270

275

280

285

290

295

300

305

310

315

0

100

200

300

400

500

600

45 93 157 237 349

L
S

T
 (

K
)

LE
T 

(W
/m

²)

DOY (2018)

LET LET* LST TF
LST LST*

250

270

290

310

330

350

370

0

50

100

150

200

250

300

350

400

450

500

45 93 157 237 349

L
S

T
 (

K
)

L
E

T
 (

W
/m

²)
DOY

Mean LET Mean LET*
Min LST Min LST*
Max LST Max LST*

0

100

200

300

400

500

600

700

800

45 93 157 237 349

L
E

T
 (

W
/m

²)

DOY (2018)

Native Grass Forest Mean LET

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W12-2020, 2020 
2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS 2020), 22–26 March 2020, Santiago, Chile

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-67-2020 | © Authors 2020. CC BY 4.0 License. 

Primary publication at IEEE Xplore: https://doi.org/10.1109/LAGIRS48042.2020.9165570

 
 

70



 

 

Figure 6. Daily evapotranspiration (mm/day) for Pampa Biome 
a) in summer (DOY 349) and b) in winter (DOY 237)  

During the winter the vary between maximum and minimum 
evapotranspiration is lower than during the summer, this result 
can be explained by the fact that during summer season the 
maximum and minimum LST variation is greater than during the 
winter. 

Schirmbeck et al., (2018) studied the Pampa Biome fluxes by 
SEBAL model using MODIS images, they conclude that the low 
spatial variability of temperature in the winter does not allow the 
correct determination of the extreme water conditions, and this 
may be occurring in the results of this work as well. 

In Figure 7 is possible to see the variability of Daily ET in both 
images a) DOY 349 and b) 237. In the first one, most of the pixels 
(area) have around 20 mm/day of ET, but there are some pixels 
between 5 mm/day and 10 mm/day. This heterogeneity did not 
occur in the second one, where most of the area have between 5 
mm/day and 7 mm/day of evapotranspiration. 

 
Figure 7. Daily evapotranspiration (mm/day) graphic 

distribution for Pampa Biome a) in summer season (DOY 349) 
and b) in winter season (DOY 237)  

 

4. CONCLUSIONS 

The S-SEBI model estimates evapotranspiration from the 
relationship between LST and albedo. In order to analyze the 
influence that the uncertainties in the estimation of LST may have 
on the estimates of latent heat flux (LET), a Gaussian noise was 
applied to the LST images.  

The higher variance between LET has occurred in DOY 157 with 
164 W m-2 of difference between real LST and noise LST, in a 
native grassland use. The results indicated that the maximum and 
minimum values of LST are responsible for the variation in the 
LET estimate. Also, the highest variation between LST values is 
produced in the summer season, which allow the selection of the 
driest and wettest pixels, mostly important step in applying S-
SEBI model. 

The Pampa Biome native grassland have lower LET than forest, 
with higher values of LET during the spring-summer period 
when compared to autumn-winter, in this way the daily 
evapotranspiration is higher when the pixel LST is lower.         
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