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ABSTRACT:

In the last decades, the Brazilian Cerrado biome has undergone major transformations due to the expansion of the agricultural
frontier. The region called MATOPIBA acronym for states Maranhdo, Tocantins, Piaui, and Bahia can be considered very attractive
for agricultural expansion. The Cerrado predominates in the MATOPIBA region (91% of the area), also having small areas of the
Amazon and Caatinga biomes to the northeast and east, respectively. In this work, we will present a study to identify center pivot
irrigation systems in the MATOPIBA region using remote sensing images from Landsat-8 satellite. The methodology is based on
the use of robust edge detection techniques such as Canny, Circular Hough Transform (CHT) and time series extraction through the
Moderate Resolution Imaging Spectroradiometer (MODIS) product MOD13Q1 which has two vegetation indices NDVI and EVI.
These time series will be used to filter the detected circles, seeking to eliminate the circles that do not correspond to center pivots.
Our approach detected 80% of the center pivots mapped by the Brazilian National Water Agency (ANA) used as a knowledge base.
The states with better detection were Piaui and Bahia that showed the accuracy of 90% and 85% respectively, Maranhdo obtained
57% and Tocantins 41%.

1. INTRODUCTION Withdrawal (m?3/s) Consumption (m?3/s)

Brazil is currently expanding its agricultural activity towards
the Cerrado. There is an indication that the expansion in this
area occurred mainly due to the Soy Moratorium in the Amazon
Biome (MAPA, 2017). It is important to mention that agricul-
tural expansion in this area impacts mainly native vegetation,
but also water resources are under pressure, especially in highly
mechanized crops.
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Irrigation is an agricultural practice that employs a set of equip-
ment and techniques to address the total or partial deficiency
of water for cultivation. However, the use of water by irriga- " W Urban Suoly Industry W Animal Supply W Mining
tion alters the conditions of availability for other applications
in its area of action, since the water withdrawn is consumed
by the evapotranspiration of plants and soil, not returning dir- Figure 1. Water use in Brazil by sectors.
ectly to water bodies. Moreover, irrigation activity in Brazil is Source: Adapted from ANA (2017) .
responsible for the largest volume withdrawal (969 m?/s) and
consumption (745 m?/s), this means about 46% of total water ) )
withdrawal (2105 m3/s) and 67% of total water consumption context, remote sensing hE.lS been presented as a good option,
(1110 m® /s) (Figure[1) . especially for mapping irrigated areas (Ozdogan et al., 2010),

as it presents advantages such as greater agility and lower cost
The identification of irrigated areas and crop types is necessary ~ compared to traditional methods such as in situ measures
for a number of reasons, such as pollution, water resource man- etal., 2018).
agement, charge for use of the water, estimation of production,
land cover, land use, deforestation, and so on. However, in most
cases, the information available in this regard comes from the
registers on the system of water resources registration, gener-
ally supplied by the user of water or from inspection carried out
by regulatory water agencies. These data commonly present in-
consistencies due to lack of updates or omissions on the part
of producers (Bastiaanssen et al., 2000). Therefore, alternative
strategies must be developed to acquire this information. In this
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N

Normalized Difference Vegetation Index (NDVI) is the most
utilized remote sensing based vegetation measure to agricul-
tural monitoring, a widely used proxy for vegetation cover and
production (Van Leeuwen et al., 2006). The strong relation-
ship between NDVI and agricultural yield can be explored for
monitoring changes in agricultural systems based on vegetation
properties, such as length of the growing season, the onset date
of greenness, and the date of maximum photosynthetic activity
are often derived from NDVI time series. These phenological
*Corresponding author indicators emphasize different characteristics of terrestrial eco-
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systems to improve understanding of structure and function of
land cover and associated changes such as response to natural or
anthropogenic disturbances. In this context, the remote sensing
based time series of NDVI are increasingly used to obtain phen-
ological data at regional and global scales (Yin et al., 2012).

Enhanced Vegetation Index (EVI) is another important vegeta-
tion index used to improve sensitivity to high biomass regions
and vegetation monitoring capability through a decoupling of
the canopy background signal and a reduction in atmospheric
influences. The EVI presents a more accurate vegetation re-
sponse than NDVI due to reduced atmospheric effects and soil
background response (Matsushita et al., 2007). Therefore, this
index was used in this research to complement the information
of phenological parameters derived from NDVI, to better char-
acterize the crop fields, based on seasonal vegetation cycles.

Based on the aforementioned considerations, this paper pro-
poses a novel approach to locating and quantifying center pivot
irrigation systems based on objects detection using Circular
Hough Transform (CHT) over a maximum vegetation response
field (Greenest Pixel) and time series analysis of vegetation in-
dices. The CHT is a simple feature extraction technique derived
from the idea of parameter space, or Hough Space (HS), origin-
ally defined by the parametric representation used to describe
lines in the picture plane using Hough Transform (HT) (Duda,
Hart, 1972). This technique is widely used in digital image pro-
cessing for detecting circles in low-quality images, because of
its robustness in the presence of noise, occlusion, and varying
illumination (Yuen et al., 1989} |Dembele, 2015).

Furthermore, we implement Landsat data processing through a
Javascript program using the Google Earth Engine’s (GEE) ap-
plication programming interfacd’| GEE is a freely accessible,
cloud-based platform designed to enable remote sensing studies
over long time scales and large spatial extents (Gorelick et al.,
2017). This processing aiming to identify the maximum NDVI
value, combining spatially overlapping images into a single im-
age. The result is an image with the greatest photosynthetic
activity at each pixel over the period (one year), which one im-
proves the detection of circular crop fields made by center pivot
systems. Especially when combined with analysis of vegetation
indices time series (NDVI/EVI), to allow eliminate circles that
do not show cyclical behavior of vegetative variability (plant-
ing/harvesting). The application programming interface of Web
Time Series Service (WTSS) was used to acquire time series to
do this task.

The goal of this works is to explore digital image processing
methods to identify and quantify center pivot irrigation sys-
tems based on geometric shapes of these targets on remote sens-
ing images to improve information about irrigation areas in the
MATOPIBA region. Therefore, the main contribution consists
of the combined use of image composition techniques to evid-
ence the maximum vegetative response of irrigated fields and
trend analysis of crop cycles through time series of vegetation
indices to validate the results.

2. MATERIAL AND METHODS

2.1 Study Area

The MATOPIBA region considered the great national agricul-
tural frontier today, is composed of four states, Maranhio, To-

IData underlying the study are available at the Figshare repository,
may be accessed at doi.org/10.6084/m9.figshare.c.4846911.

cantins, Piauf and Bahia, both belonging to the Cerrado biome,
and is responsible for much of the Brazilian grain production,
with an area of about 73 million hectares (Embrapa, 2019). The
delimitation of this region can be seen in Figure[2] where the re-
gion is represented by the red polygon.

+
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Figure 2. Map of study area overlaid by the Landsat 8 tileﬂ

2.2 Data Sources Plataforms

The detection of center pivots was developed using multi-source
multi-temporal remote sensing data for the year 2017 and the
geospatial vector dataset of center pivots mapped from ANAE]in
collaboration with Brazilian Agricultural Research Corporation
(Embrapa) for the same year, as the knowledge base. This map-
ping was performed through visual analysis of Landsat, Sen-
tinel and other satellite images (ANA, Embrapa, 2019).

Data sources used for this work were time series of vegeta-
tion indices (NDVI/EVI) from MOD13Q1 product of sensor
Moderate Resolution Imaging Spectroradiometer (MODIS) on
AQUA/TERRA platforms, which has a 16 days temporal resol-
ution and 250 meters spatial resolution (Didan, 2015). Another
information used was the maximum response of vegetation, get-
ting the pixel of major value from product NDVI estimated from
bands of Operational Land Imager (OLI) on Landsat 8 (Roy et
al., 2014) for period of study (a year).

Our approach used WTSS to obtain MODIS vegetation indices
time series, this service is part of big project termed Web ser-
vices for Big Earth Observation Data, this project from Brazil
created a complete infrastructure with servers, open source lib-
raries, and products to support research from various areas of
Earth observation (Vinhas et al., 2017). Another source data
used was scenes of Landsat 8 OLI acquired over MATOPIBA
region for the year 2017, using the GEE platform, the coverage
of the whole area of interest of this work requires 40 distinct
tiles (Figure[2)). The entire collection of images (835) was used
because the main objective was to recover maximum vegeta-
tion response to improve border detection of crop fields. The
clouds, shadows, and water bodies were masked using Quality
Assessment (QA) bands included in Landsat Surface Reflect-
ance Product. QA bands are important to identify the pixels

2The study area ranges in latitude from -2.2193° to -15.2647° and in
longitude from -41.7959° to -50.7421°. Geospatial data describing this
area are available to download at http://mapas.cnpm.embrapa.br/
matopiba2015/,

3GeoNetwork is the online repository of  geospatial
data made by ANA. Please refer to this address https:
//metadados.ana.gov.br/geonetwork/srv/pt/main.home?
uuid=e2d38e3f-5e62-41ad-87ab-990490841073 to take access of
geospatial vector dataset of center pivots. Accessed in Jan. 22, 2020.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-73-2020 | © Authors 2020. CC BY 4.0 License.
Primary publication at IEEE Xplore: https://doi.org/10.1109/LAGIRS48042.2020.9165648 74


doi.org/10.6084/m9.figshare.c.4846911
http://mapas.cnpm.embrapa.br/matopiba2015/
http://mapas.cnpm.embrapa.br/matopiba2015/
https://metadados.ana.gov.br/geonetwork/srv/pt/main.home?uuid=e2d38e3f-5e62-41ad-87ab-990490841073
https://metadados.ana.gov.br/geonetwork/srv/pt/main.home?uuid=e2d38e3f-5e62-41ad-87ab-990490841073
https://metadados.ana.gov.br/geonetwork/srv/pt/main.home?uuid=e2d38e3f-5e62-41ad-87ab-990490841073

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W12-2020, 2020
2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS 2020), 22-26 March 2020, Santiago, Chile

that might be affected by instrument artifacts or subject to cloud
contamination. This is necessary because NDVI calculated over
pixels containing clouds will show lower values making it dif-
ficult to determine correct growing up of vegetation, would be
taken an incorrect sense of vegetation reduction (USGS, 2019).
These images (tiles) show the maximum NDVI per pixel over
the analyzed period (a year). The number of pixels that contrib-
ute to the greenest-pixel composites varied by pixel and by tile,
depending on the number of images available for each path/row
or cloud cover frequency.

2.3 Data Processing

Our methodology described in Figure [3] show steps necessary
to retrieve candidate circles of center pivot systems to compare
with our knowledge database from ANA. Therefore, we used
GEE to preprocess the Landsat collection scenes to compute
of greenest pixel (maximum NDVI) composition, improving
the delimitation of crop fields, and allowing identify possible
circles of center pivots based in a parameter space defined of
HT applied to circles, i.e., CHT.

The CHT proposed by Duda and Hart (1972) is one of the mod-
ified versions of the HT method to detect circular objects, being
recognized as one of the most robust techniques for curve detec-
tion in noisy images (Rizon et al., 2005). This method aims to
find circular patterns within an image based on peaks detection
in 3D accumulator array representing parameter space (a, b, )
defined by dimensions of image and range of radii
[1972). A set of feature points is mapped into image space to a
set of accumulated votes (intersections) in parameter space

zon et al., 2005). If a circle in the image is represented math-

ematically as:

(xfa)QJr(yfb)2 =r? (1)
where a, b = coordinates of the circle center
r =radius of circle
x,y = image coordinates

Then an arbitrary edge point (z,y) will be transformed into a
circular cone in the (a, b, r) parameter space. If all the image
points lie on a circle then the cones will intersect at a single
point in (a, b, ) corresponding to the parameters of the circle
(Yuen et al., 1989). This approach requires a very large num-
ber of points to be accumulated in three-dimensional parameter
space to detect circles of various sizes in images, thereby im-
posing excessive requirements to storage and search

1988).

In this sense, as a way to reduce these requirements, we used a
more clever method of CHT implemented in the OpenCV Py-
thon library (2-1 Hough Transform - 21HT), which uses the
gradient information of edges and decompose the circle finding
problem into two stages. First, consisting of a 2D HT to find
circle centers, considering that the center of a circle must lie
along the gradient direction of each edge point on the circle,
then the common intersection point of these gradients identifies
the center of the circle. A two-dimensional array is required
to accumulate the center finding transform, and candidate cen-
ter parameters are identified by local peak detection. Second,
based in 1D HT to determine radii, to identify the radius of
circles, the distance of each point from a candidate center is
calculated and a radius histogram is produced. The peaks in

the radius histogram indicate evidence for circles
[1989). Further details of 21HT method can be obtained at Yuen

et al. (1990).
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Figure 3. Flow chart of our approach.

In our workflow, we apply edge detection on greenest pixel im-
ages and use CHT implemented on OpenCV to retrieve candid-
ate circles of center pivots. In this context, the 2D parameter
space has the same scale of Landsat images, as described in
Table [T] together with all the parameters used in 21HT method
adjusted to our study area.

Feature Value Meaning

Defines the size of accumulator

matrix relatively to your image

size. If dp=2, the accumulator has

half width and height, getting less

accurate circle parameters, but a

more strong voting

50 Gradient value used to handle edge

detection

It is the accumulator threshold for

the circle centers

34 Distance between the center of

circles detected

10 Minimum size of the radius (in
pixels)

Maximum size of the radius (in

pixels)

dp 1

paraml

param?2 15

minDist

minRadius

maxRadius 34

Table 1. Parameters adjusted to CH’Iﬂ
2.4 Data Analysis

The data analysis was carried out using R and Python program-
ming languages due to the facilities provided by their libraries
and packages. For instance, the GeoPandas library was used
to generate points (centroid and midpoints) into objects identi-
fied in images through CHT (GeoPandas Development Team,|
2019).

For each circle retrieved from HS corresponding to the response
of a possible center pivot circle, the algorithm used the WTSS

4Additional information about the parameters used in
function cv2.HoughCircles, available on OpenCV docs at
https://docs.opencv.org/2.4.13.7. Accessed on Feb. 5, 2020.
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to recover time series of vegetation indices (NDVI/EVI) in or-
der to characterize the phenological behavior of the surround-
ing region. It is worth mentioning that four cardinal directions
midpoints used to extract the time series of each circle retrieved,
aiming at the characterization of partial circles of center pivots.

The period analyzed to validate the center pivots detection was
November 2017 to March 2018, corresponding to the crop sea-
son in the region of study. Because the vegetation index would
be higher at this time, compared to the rest of the year. As the
targets of this work are objects with cycles of growing vegeta-
tion, a time series analysis based on phenological parameters,
such as amplitude and standard deviation of NDVI/EVI curves
corresponding to seasonal vegetation cycles, was performed to
remove some circles that were detected, but are not really crop
fields. For this, we used the standard deviation, because the ve-
getation indices at the time the crop is in development are quite
different when the crop is harvested.

The thresholds (NDV Igmpiitude = 0.06, NDV I q = 0.02,
EV Iimplitude = 0.07 and E'V I;;q = 0.02) used for circles ex-
clusion, were based on the values extracted from time series of
all center pivots mapped by ANA in the MATOPIBA region.
These times series was acquired from the midpoint between
the centroid and the main cardinal directions (4 points) of each
circle defined in spatial vector file from ANA, to enable trend
analysis through the mean value of the standard deviation and
amplitude from vegetation indices. First, we eliminated the
circles that had series lower than the standard deviation of ref-
erence (ANA), with this approach, the number of circles that
did not correspond to pivots decreased significantly. After this
stage, the circles that presented amplitude smaller than the ANA
points were also removed.

3. RESULTS

Figure ] shows two points representing the centroids of candid-
ate circles detected by the CHT, one really represents a center
pivot, while the other represents a point located on a dune re-
gion in Maranhdo. With WTSS it is possible to analyze the
vegetation index of each location. As depicted in Figure the
time series for both locations are quite different. The series of
point (a) presents the cycle characteristic, with ups and downs,
whereas the series of point (b) practically does not vary and is
very close to O in the analyzed period. The identification of a
false circle (pivot) here occurs because the region shown in (b)
is located at Lengdis Maranhenses National Park that is com-
posed of rolling sand dunes. During the rainy season, it’s val-
leys are filled with freshwater forming numerous lagoons (blue
contours), which cause radiometric saturation at sensor OLI of
Landsat 8 (missing data) generating many edges. This is be-
cause highly reflective surfaces and sun glint over water bodies
is an important factor that could cause the saturation of the re-

flective wavebands (Roy etal., 2016], Zhou et al., 2017).

The analysis of the time series allows eliminating most cases of
false detection based on the trend of agricultural cycles. There
remains a limitation regarding the shape of the crop fields found,
for example, the Figure |6] highlights a cluster of center pivots
correctly identified after object detection process (CHT) and fil-
tering using vegetation index time series because they met the
permanence criteria (thresholds). On the other hand the Fig-
ure m shows traditional fields of agriculture, rectangular, these
fields remain even with the application of the filters, as they are
also cultivated areas, they fall within the established vegetation
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Figure 4. The centroids of candidate circles detected with CHT.
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Figure 5. Example of time series.

thresholds. The overall potential of the result of our approach
is showed spatially in Figure [8] the percentage was calculated
considering existence or not of center pivots in each tile cover-
ing the MATOPIBA region.
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4. DISCUSSION

Our approach detected about 80% (1424/1762) of the center
pivots mapped by ANA in the MATOPIBA region. Considering
the percentage per state, Piauf and Bahia showed better detec-
tion results with values of 90% (18/20) and 85% (1302/1517)
respectively, while Maranhdo obtained 57% (40/69) and Tocan-
tins 41% (64/156) (Figure E[) The accuracy for the last two
states was affected by the aforementioned problems, such as
sun glint over water bodies and crop field format.

The time series analysis supported by WTSS showed good per-
formance regarding the elimination of non-pivot irrigation sys-

tems. However, this approach has a limitation when the object
retrieved is a cultivation field not necessarily irrigated by the
center pivot. A possible solution for this issue would be to add
an extra step to analyze the shape of the object retrieved using
edge information.
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Figure 9. Center pivots mapped by ANA vs detected by our
method.

5. CONCLUSIONS

The analysis of circles detected in the images of the MATOP-
IBA region using time series is an effective automatic method
for detecting central pivot irrigation systems. The results ob-
tained were very similar to those mapped by ANA through the
costly approach of visual analysis.

From the analyzed areas it was found that several factors can
influence the detection, such as the frequency of clouds and
shadows, sun glint, and so on. These factors contribute to the
generation of false-positive cases impacting the accuracy of the
method in addition to increasing the computational cost of the
analysis made based on time series. This shows the need for a
broad understanding of the agricultural dynamics of the studied
region, besides the use of robust techniques to analyze land use
processes.

As future work, we plan to use other methods to adjust thresholds
and refine the filter process, for example, the Time-Weighted
Dynamic Time Warping (TWDTW) method allows identifying
patterns of vegetation dynamics from MODIS EVI data to clas-
sify land use and land cover types (Maus et al., 2016). Using
this information can improve the identification of crop field ob-
jects retrieved from HS, through the mining of time series. In
addition, we plan to improve the automatic detection of center
pivots using Machine Learning, especially convolutional neural
networks, due to its capacity to classify targets based on fea-
tures characteristics in their layers.
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