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ABSTRACT:

1

SAR despeckling is a key tool for Earth Observation. Interpretation of SAR images are impaired by speckle, a multiplicative noise
related to interference of backscattering from the illuminated scene towards the sensor. Reducing the noise is a crucial task for the
understanding of the scene. Based on the results of our previous solution KL-DNN, in this work we define a new cost function
for training a convolutional neural network for despeckling. The aim is to control the edge preservation and to better filter man-
made structures and urban areas that are very challenging for KL-DNN. The results show a very good improvement on the not
homogeneous areas keeping the good results in the homogeneous ones. Result on both simulated and real data are shown in the

paper.

1. INTRODUCTION

Nowadays, a lot of effort has been spending in the direction of
earth observation and thanks to the continuous development of
satellite sensors more and more data are available. Given the
huge availability of data, together with their day by day updat-
ing make the use of remote sensing images a crucial source for
earth monitoring. In the last decades, remote sensing images
have been used for many applications such as classification, de-
tection and segmentation. The possibility of having an always
updated data it is very important for the monitoring of wide
areas like forest, agricultural field and urban areas. Moreover,
it is also important for detection of natural and man-made dis-
aster like landslide and fire detection.

Several methods have been developed to these aims taking ad-
vantage from both optical and SAR sensors. SAR are active
sensors that work day and night, in any meteorological condi-
tion. Indeed, SAR images are crucial for monitoring in a fast
way our planet. SAR imaging formation is characterized by
particular geometrical effects: multiple bouncing, shadowing
and layover are all related to the presence of an abject on the
scene, to its position, to the position and angle of view of the
sensor. Moreover, SAR images are also affected by a multi-
plicative noise called speckle (Argenti et al., 2013). Speckle is
related to coherent and incoherent interferences among backs-
cattering: depending on the relationship between the roughness
of illuminated object and the transmitted wavelength, the backs-
catterings are spread in several direction and so, backscattering
from different objects will interfere each other. Bright pixels
are due to the constructive interference, dark pixels to destruct-
ive interference. This make the typical alternation of spikes and
dark pixels in the SAR image, that obviously impairs the under-
standing of the scene. Therefore, despeckling usually is used as
a preprocessing for further applications. In the last decades sev-
eral despeckling methods have been developed. The first pro-
posed despeckling filters were the Local filters, so called be-
cause work on the assumption of the pixel similarity in its own
neighbourhood. These kind of filters (Argenti et al., 2013) usu-
ally suffer of smoothness in presence of edges. In fact, pixels
that belong to the boundary between two different areas do not
have many similar in the neighbourhood. In order to overcome
this problem, in the last years Non-Local (NL) filters have been

proposed (Deledalle et al., 2014). These filters largely over-
come the local one both in noise suppression and edge preser-
vation. They look for similarity in a wider area: given a central
pixel in a patch, similar patches are searched in a wider area
and the result is the combination of selected patches. The sim-
ilarity criteria and the combination’s rule make the differenti-
ation among different methods (Deledalle et al., 2014), (Am-
brosanio et al., 2018), (Aghababaee et al., 2018). Among these
filters there are those that make use of optical data for helping
the despeckling process (Vitale et al., 2019a) and others that
takes advantage from the ratio image (Ferraioli et al., 2019) (it
is the ratio between the SAR image and the filtered one, rep-
resenting the predicted speckle). The drawback of these NL
filters is that they are time consuming. In the last years, deep
learning base methods are showing impressive results in many
application of natural image processing such as classification,
segmentation and detection (He et al., 2017). Actually, good
results are achieved also in several remote sensing application
like land classification and segmentation (Mazza, Sica, 2019),
super-resolution (Vitale, 2019) and detection (Gargiulo et al.,
2019). Clearly, the deep learning base method for despeck-
ling have been proposed (Wang et al., 2017), (Chierchia et al.,
2017), (Vitale et al., 2019b). Given the great amount of data and
the rapidity of producing results easily match with deep learn-
ing solution. In this work we proposed a convolutional neural
network (CNN) for despeckling. Based on the results of our
previous solution (Vitale et al., 2019b), we propose a new cost
function in order to better preserve and handle the edges.

2. DATA SIMULATION AND BACKGROUND

Training a CNN for desplecking is a challenging task because
of the lack of a noise free reference. The proposed solution
work with simulated data under the fully developed hypothesis
of the noise. In this work we inherit the architecture of KL-
DNN (Vitale et al., 2019b) and we apply another cost function
in order to improve the edge preservation: the aim is to bet-
ter filter not homogeneous areas, such as man-made structures,
where KL-DNN performs poorly.
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2.1 Data Simulation

We simulated a single look (L = 1) speckle N under the fully
developed hypothesis with the following known Gamma distri-
bution (Argenti et al., 2013)

1 LENE-1,~NL

p(N7L):m

It means, in the simulation we consider just the speckle that
homogeneous areas are characterized with. In order to obtain
noise-free reference X, we collected images from the optical
dataset Merced Land Use (Yang, Newsam, 2010), so conver-
ted those images to gray scale. So, we multiplied the simulated
noise for producing the simulated SAR image ¥ = N - X.
Finally, we tiled the dataset in patches of dimension 64 x 64:
30000 patches were used for the training and 7000 for the val-
idation.

2.2 KL-DNN
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Figure 1. KL-DNN architecture

In our previous work, we trained a ten layers CNN (KL-DNN)
(for training details refer to (Vitale et al., 2019b)) on the simu-
lated data. The cost function involved in this work is given by
combination of two terms:

L=Lyuse +ACkL

Luse = [|X - X||?

Y'Y
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where N and N are the estimated noise and the theoretical
one, respectively; Dk r(p, q) is the Kullback-Leibler (KL) di-
vergence between two distributions p and ¢
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In this cost function Larsg is responsible of spatial preser-
vation by comparison of filtered image X and the noise-free
reference. Ly, is responsible of statistical noise preservation
comparing the probabilistic distribution function of estimated
N and the theoretical one by mean of KL divergence. The aim
of this cost function is to suppress the noise taking care of its
statistical properties.

Drr(p,q

3. PROPOSED METHOD

The mentioned solution provides good results on homogeneous
areas, but presents artefacts in the not homogeneous ones such
as urban areas where many man-made structures are present.
Man made structures in real SAR images look totally different

from the one in simulated data due to the geometry of SAR im-

age acquisition: when an object is illuminated by the SAR, ef-

fects like layover, shadowing and multiple bounces arise. Usu-

ally, in SAR image a building is characterized by a side with a

strong backscattering due to multiple reflections with the ground,
and the other side is darker due to the layover and shadowing.

The speckle in such areas is not fully developed (Frery et al.,

1997), and our simulated data do not include such effects and

statistics.

Given KL-DNN works under the fully developed hypothesis, it
does not know how to filter man-made structures. Generally, it
is going to filter them in order to produce a speckle that is fully
developed and so many artefacts arise.

In order to limit this problem we include a term in the cost func-
tion for improving the edge preservation. The aim is to make
the network able to recognize man-made structures and to pre-
serve their shape (usually characterized by strong edges). In
such way, we want the network to filter homogeneous areas and
to preserve objects details. So the actual cost function is com-
posed of three terms:

(x.X)

Figure 2. Proposed Cost Function
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where = and L are respectively the derivatives along the rows
and columns of the image /. With this function we train the
network to suppress the noise, taking care both of the statistical
properties of the speckle and of the present edges.

4. EXPERIMENTS

In order to have a fair comparison with KL-DNN, we use its
same architecture. Moreover, we trained both the proposed net-
work and KL-DNN on the same dataset, with Adam optimizer
(Kingma, Ba, 2015).

Numerical and visual assessment are carried out for validating
the method. We test our solution on both simulated and real
data. We show comparison with our previous solution KL-DNN
in order to show the impact of the cost function. Moreover, for
sake of completeness we also compare with two famous non-
local filters such as FANS (Cozzolino et al., 2014) and SAR-
BM3D (Parrilli et al., 2012). The simulated data are taken from
the Mercedes dataset and from scraped Google Maps (Wang et
al., 2017) and never seen during the training. The simulation
follows the process depicted in Section 2.
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Figure 3. Results on simulated data, from top to bottom: clip1l
(scraped Google Maps), clip2 (scraped Google Maps), clip3
(Mercedes Land Use)

In Fig.3 are shown results on simulated data. In all cases, it can
be appreciated how the introduction of the term LgpgE in the
cost function improves the edge preservation. In clipl and clip2
(first two rows of Fig.3), we consider an urban area: compared
to KL-DNN, the filtered image is closer to the reference: the
results are sharper and more clean. Moreover, the proposed ap-
proach shows a much better edge and detail preservation, e.g.
the objects on the rooftop are more visible than in KL-DNN.
Same consideration can be done on the image for clip3 (last
row of Fig.3) that shows a storage tanks: compared to KL-
DNN, the edges are better preserved and details look sharper.
In both cases, FANS and SAR-BM3D show several artefacts:
FANS tends to preserve edges but is oversmoothed and lose a
lot of details., SAR-BM3D better preserves details with respect
to FANS but smooths the edges. Anyway, the proposed solu-
tion shows better edges and details preservation with respect
the other methods.

Clipl SSIM SNR MSE
FANS 0.744 8.59 287
SAR-BM3D 0.763 8.67 282
KL-DNN 0.767 879 274
Proposed 0.769 8.83 272
Table 1. Numerical Results on clipl
Clip2 SSIM SNR MSE
FANS 0.785 7.93 265
SAR-BM3D 0.793 7.86 270
KL-DNN 0.794 7.97 263
Proposed 0.796 7.98 262

Table 2. Numerical Results on clip2

These considerations are confirmed by the numerical assess-
ment in Tabb. 1-3. The presented metrics indicate how much
the filtered image is close the reference one (MSE), how much
the noise is suppressed (SNR) and how much the filtered and
reference image are similar from a perceptual point of view
(SSIM). Ideal filter will give MSE=0, SNR=inf and SSIM=1.
In all the metrics, the proposed solution outperforms the other
methods validating the previous consideration.

Regarding the real SAR images we consider a TerraSAR-X im-
age taken from Rosenheim . In Fig. 4 are shown the results for
all the methods. Generally, we can keep the considerations done
for simulated data. In this case, the proposed solution is sharper
than KL-DNN showing a better edge preservation. Moreover,
the proposed solution better preserves details and small object
that are completely lost in FANS. Instead SAR-BM3D has very
good edge preservation but a poor noise reduction. Actually,

Clip3 SSIM SNR MSE
FANS 0.758 9.67 419
SAR-BM3D 0.729 8.72 522
KL-DNN 0.761 9.89 398
Proposed 0.796 10.04 385

Table 3. Numerical Results on clip3

we want to focus on those challenging areas for KL-DNN. It
means we want to find out the behaviour on man-made struc-
tures where the speckle is not fully developed and where KL-
DNN tends to smooth the image. In Fig. 5 two details from
Rosenheim are shown. In both cases it can be noted how KL-
DNN face difficulties in filtering such areas and tends to smooth
them. After all, KL-DNN is trained under the fully developed
hypothesis, so these troubles should be expected . Watching the
proposed results it can be noted that, introducing a cost function
for edge preservation helps the network in localize and recog-
nize these strong backscatterers as object to be preserved and so
the smoothing effect is strongly preserved. It is clear from the
two details in Fig.5 and the whole image in Fig.4 that the pro-
posed solution is able to better preserve the sharpness of these
edges without losing details on the homogeneous areas, even
if the assumption of fully developed hypothesis is still valid
during the training. So, the term Lgpgr helps the network
in overcoming the limitation of fully developed hypothesis by
preserving the geometry of man-made structures.

Noisy KL-DNN

Proposed

Figure 4. Results on Real Data: Rosenheim area taken from
Terrasar-X

Proposed KL-DNN

Noisy

Figure 5. Details of real data

5. CONCLUSIONS

In this paper a convolutional neural network for despeckling
has been proposed. In this work we define a new cost func-
tion, based on the knowledge of our previous solution KL-DNN
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where the network is trained under the fully developed hypo-
thesis. This cost function aims to better preserve the edges and
to have a better filtering process in areas where man-made struc-
tures are present. The results show how, even if the network is
still trained under the fully developed assumption, the introduc-
tion of a loss taking care of the edges helps the filter in treating
the not homogeneous areas.
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