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ABSTRACT: 

There is a need to intensify research efforts on improving productivity of indigenous vegetables in South Africa. One research avenue 

is operationalizing remote sensing techniques to monitor crop health status. This study aimed at characterising the spectral properties 

of Chinese cabbage (Brassica Rapa L. subspecies Chinensis) grown under varying fertilizer treatments: nitrogen (0 kg/ha, 75 kg/ha, 

125 kg/ha, 175 kg/ha and 225 kg/ha), phosphorus (0 kg/ha, 9.4 kg/ha, 15.6, 21.9 kg/ha and 28.1 kg/ha) and potassium (0 kg/ha, 9.4 

kg/ha, 15.6 kg/ha, 21.9 kg/ha and 28.1 kg/ha).  Visible and infrared spectral measurements were taken from a total of 60 samples inside 

the laboratory. Contiguous spectral regions were plotted to show spectral profiles of the different fertilizer treatments and then classified 

using gradient boosting and random forest classifiers. ANOVA revealed the potential of spectral reflectance data in discriminating 

different fertiliser treatments from crops. There was also a significant difference between the capabilities of the two classifiers. Gradient 

boost model (GBM) yielded higher classification accuracies than random forest (RF). The important variables identified by each model 

improved the classification accuracy. Overall, the results indicate a potential for the use of spectroscopy in monitoring food quality 

parameters, thereby reducing the cost of traditional methods. Further research into advanced statistical analysis techniques is needed 

to improve the accuracy with which fertiliser concentrations in crops could be quantified. The random forest model particularly requires 
improvements.  

1. INTRODUCTION

Environmental degradation, food insecurity and malnutrition are 

increasingly becoming a concern globally and in South Africa. 

South Africa needs to ensure a healthy agricultural industry that 

contributes to the gross domestic product (GDP), food security, 

social welfare, job creation and ecotourism; while adding value 

to natural resources. Sustainable agriculture has been promoted 

as an alternative to conventional farming systems. Precision 

agriculture has been adopted by some producers to increase 

efficiencies of fertiliser and water inputs and to optimise crop 

growth and product quality (Blignaut et al., 2014). Precision 

farming uses regular, detailed soil and leaf mineral analyses 
which are the basis of precise fertiliser recommendations. 

As per the South African Year Book published by the Department 

of Government Communications and Information System (GCIS, 

2015), the agricultural industry has been greatly influenced by 

diverse climatic conditions in various regions. Commercial 

farmers who produce 95% of South Africa’s food are heavily 

dependent on fertilisers to maintain yield levels (Goldblatt et al., 

2009; Blignaut et al., 2014; GCIS, 2015). This results in roughly 

60% of the cropland area in South Africa being moderately to 

severely acidic in the topsoil, while 15% of the cropland area is 

affected by subsoil acidity (Goldblatt et al., 2009; Blignaut et al., 

2014; GCIS, 2015). In addition, approximately 1.3 million 

hectares of croplands are under irrigation to ensure year-round 

food supply in various climatic regions (GCIS, 2015). Therefore, 

water scarcity and soil degradation are pressing issues affecting 
crop production.  

While there is a need for more sustainable farming methods, there 

is also a need to expand South Africa’s food resources and 

enhance food quality assessment techniques. Remote sensing is 

one method that can improve the effectiveness of crop production 

management and has shown considerable potential to monitor 

food quality. The basic principle of remote sensing is that all 

materials, due to difference in their chemical composition and 

inherent physical structure, absorb, scatter, reflect and emit 

electromagnetic energy in distinctive patterns at specific 

wavelengths (Reddy, 2008; Ortenberg, 2009; Elmasry et al., 

2012). This unique characteristic is called a spectral signature. 

Each material has a distinctive spectral signature that is indicative 

of its chemical composition and other characteristics (Reddy, 
2008; Elmasry et al., 2012).  

Traditionally, agricultural remote sensing used multispectral 

imagery. With advances in sensor technology over the past two 

decades, the introduction of hyperspectral remote sensing 

imagery to agriculture provided more opportunities for field level 

information extraction (Yao et al., 2012). Hyperspectral remote 

sensing acquires information about objects in several (usually 

hundreds) narrow, contiguous wavelengths of the 

electromagnetic radiation (Carroll et al., 2008; Huang & Asner, 

2009; Jensen, 2014; Alparone et al., 2015). Several studies have 

successfully used hyperspectral remote sensing to monitor crop 

nutrients (Anawar et al., 2012; Feng et al., 2015; Basso et al., 

2016), detect weeds (Eddy et al., 2013; Shapira et al., 2013), and 

manage diseases and pests (Huang et al., 2013).  

Limited research has been conducted on Chinese cabbage 

characteristics – structure (van Averbeke et al., 2007), growth 

period and environmental conditions (Kalisz, 2011) as well as 

optimal fertiliser inputs for maximum yields (Ahmad et al., 2014; 

Li et al., 2015). Thus, there is limited-to-nil research conducted 
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to analyse the spectral properties of Chinese cabbage relative to 

various fertiliser treatments. The aim of this paper was, therefore, 

to characterise the spectral properties of Chinese cabbage grown 

under varying concentrations of Nitrogen, Potassium and 

Phosphorus. Specific objectives are (1) to investigate the 

performance of spectroscopy in discriminating fertiliser 

concentrations, and (2) to compare the performances of gradient 

boosting and random forest classifiers in categorising fertiliser 
treatments from spectra.  

2. METHODOLOGY

2.1 Study Area 

Chinese cabbage was cultivated at the Roodeplaat Vegetable and 

Ornamental Plant Institute of the Agricultural Research Council 

(ARC-VOPI). The institute is located approximately 25 km 

north-east of Pretoria, as shown in figure 1. Pretoria, South 

Africa’s capital city, is governed by the City of Tshwane 

Metropolitan Municipality. The main geological formations 

around Roodeplaat are the Daspoort, Timeball Hill and 

Magaliesberg formations from the Pretoria Group. The region is 

characterised by ridge and valley topography. Prominent ridges 

include the Daspoort rant, Piemeefrant, Bronberg and 

Magaliesberg. Across the ARC-VOPI is the Roodeplaat Dam 

which is fed by four streams – Roodeplaatspruit, Pienaars River, 

Moreletaspruit and Hartbeesspruit. Roodeplaat normally receives 

about 573 mm of rain per year, with most rainfall occurring 

during summer. It receives the lowest rainfall (0 mm) in June and 

the highest (11 mm) in January. The average midday 

temperatures for Roodeplaat range from 18.3° C in June to 27.5° 

C in January. The region is the coldest during July when the 

mercury drops to 1.7° C on average during the night. January is 

the hottest month with average maximum temperatures reaching 
30° C.   

Figure 1. Location of the Study Area 

2.2 Sampling 

Chinese cabbage was systematically cultivated across a 

demarcated field, as shown in figure 2. Seedling and 

transplanting were performed in a controlled environment (glass 

house) prior to cultivation. Variable-rates of nitrogen, 

phosphorus and potassium (N: P: K) fertiliser were applied to 

Chinese cabbage, as detailed in table 1. Since K is not available 

to the crop immediately, it was applied before planting. Whereas, 

N was applied on top-soil, then irrigated to percolate. This N: P: 

K trial was replicated 4 times in different blocks (demarcations). 

There was little-to-nil within-block variation as the cultivation 

was strictly controlled. A drip-irrigation system was used to 

water the field at variable-rates in the morning. The first harvest 

was carried out on 2nd February 2017, after 3 months of 

cultivation. Crops were harvested from 3 inner rows and not 

along the boundaries of the block. The crops were bagged and 

labelled in a systematic manner according to their N: P: K 
treatment levels.  

Figure 2. Sampling technique for Variable-Rate Fertilizer 

Treatments 

Treatment Nutrient Applied (kg/ha) 

N P K 

T1 (control) 0 0 0 

T2 75 9.375 9.375 

T3 125 15.625 15.625 

T4 175 21.875 21.875 

T5 225 28.125 28.125 

Table 1. NPK Concentrations per Treatment Level 

2.3 Data Analysis 

2.3.1 Processing: the spectral measurements of each treatment 

group were averaged to overcome individual scan variations. 

Noisy bands were removed at several regions, namely 340 nm – 

494 nm, 603.6 nm – 663.9 nm, 920.7 nm – 1051.6 nm and 2123.1 

nm – 2503.4 nm. Reflectance curves were subsequently plotted 

to identify spectral regions which can distinguish the five 

treatment levels, as shown in figures 3 to 5.  

2.3.2 Random Forest Classification: is a bagging method that 

employs recursive partitioning to divide the data into many 

homogeneous subsets called trees (Abdel-Rahman et al., 2013). 

Each tree is independently grown to its maximum size based on 

a bootstrap sample from the training data set without pruning. In 

each tree, the model randomly selects a subset of variables to 

determine the slit at each node (Abdel-Rahman et al., 2013). The 

‘randomForest’ package in the R software for statistical analysis 

was utilised. However, a leave-one-out cross validation method 

was applied instead of out-of-bag partitioning, owing to the small 

dataset used in the experiment. Top-20 important bands were 

selected, and the model was re-run using the selected bands to 

improve classification accuracy and subsequently assessed by 

confusion matrix and overall statistics.  

2.3.3 Gradient Boosted Classification: is a supervised method 

and it assumes availability of a set of training samples 

(Nowakowski, 2015). It has two phases of processing: training 

and testing. The common approach to the training stage of 

boosting methods is to build a strong classifier from iteratively 

selected weak classifiers. In each iteration, every weak classifier 

is evaluated on weighted training data and a classification error 
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is provided (Nowakowski, 2015). The weak classifier which 

produces the smallest error is added to the resulting strong 

classifier with computed weight. The performances of the two 

classifiers were compared based on accuracy and stability. The 

‘gbm’ package in the R software for statistical analysis was 

utilised. A leave-one-out cross validation method (available in 

caret package) was applied instead of partitioning the dataset. 

Post classification, top-20 important bands were selected and the 

model re-run only with selected bands to improve classification 

accuracy. Classification accuracy was assessed by confusion 

matrix as well as the Kappa coefficient and confidence interval.  

3. RESULTS

A single-factor analysis of variance (ANOVA) was performed 

with 95% confidence interval. Overall, the difference between 

treatment levels was insignificant (p = 0.628869). Significant 

differences were found only at the two identified regions which 

could clearly discriminate treatment levels. Region A (p = 3.96E-

14) had highly significant differences compared to Region B (p

= 0.009206). Figures 3 shows the spectral profile of the 5

treatment levels, with visible discrimination of treatment levels

shown in figures 4 and 5. This analysis was followed by a

comparison of two classifiers: random forest and gradient
boosted classification.

Figure 3. Reflectance Curves of Different Treatment Levels 

Figure 4.  Region A Discriminating Treatment Levels 

Figure 5. Region B Discriminating Treatment Levels 

3.1 Gradient Boosted Classification 

The GBM model produced a satisfactory classification accuracy 

of 70% (Kappa = 62.5%; 95% confidence interval (CI) = 0.5679, 

0.8115) using the full spectrum. Figure 6 shows a matrix of the 

classification. The class T1 had the lowest accuracy (25%), while 

T5 produced the highest (75%). The T1 and T5 classes were 

misclassified more with each other than other classes. This 

implies that the control group (no fertiliser added) had similar 

reflectance to the group with the highest fertiliser concentration. 

If the two groups are not distinguishable, it could be deduced that 
T5 is equivalent to not applying fertiliser to the crop.  

Figure 6. Classification Matrix for GBM Model using Full 

Spectra 

Top 20 ranked variables identified by the GBM model are shown 

in figure 7. These bands are distributed across the range of the 

spectrum. The wavelength with the highest importance (10.87%) 

lies in the infrared region (1895.4 nm), but outside of the red-

edge inflection point (690 – 730 nm). This can be attributed to 

the previously reported importance of the infrared region in 
vegetation studies.  
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Figure 7. Important Variables Identified by GBM Model using 

Full Spectra 

Classification accuracy of the GBM model improved with the use 

of the important variables, as seen in Figure 8. The overall 

accuracy improved to 88.33% (Kappa = 85.42%; 95% CI = 

0.7743, 0.9518). The confidence interval is also excellent, 

considering the worst case would be 77% accurate. The class T1 

produced a 100% accuracy, followed by T5 with 83% accuracy.  

Figure 8. Classification Matrix for GBM using Important 

Variables 

3.2 Random Forest Classification. 

The RF model yielded a poor classification accuracy of 32% 

using the full spectra (Kappa = 15%). As seen in figure 9, only 

one class (T5) had a classification accuracy above 50%. All the 

other classes produced similarly poor accuracies. Although 

random forest is favoured in many studies for its superiority, the 

model did not perform to the expected standards. One reason for 

this unexpected result could be the size of the sample used. 

Random forest was used with a small sample of only 60 leaves, 
making it 12 samples per treatment level.  

Figure 9. Classification Matrix for RF Model using Full Spectra 

The RF model identified different important variables from those 

identified by the GBM model. No bands in the blue and green 

regions of the spectrum were identified as important, as shown in 

figure 10. The important variables are instead distributed across 

the red, near-infrared, infrared regions of the spectrum. The 

variable with the highest influence (100%) lies in the mid-

infrared region (1959.5 nm). 

Figure 10. Important Variables Identified by RF Model using 

Full Spectra 

Using the important variables, the accuracy of the RF model 

increased accuracy to 37% (Kappa = 21%). However, there was 

more variation in the class prediction accuracies, as shown in 

figure 11. The T1 class was classified with the highest accuracy 

(41.7%). Again, T1 was misclassified more with T5 than other 

classes. 
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Figure 11. Classification Matrix for RF Model using Important 

Variables 

4. CONCLUSION

It is evident that spectral reflectance data can discriminate slight 

differences between fertiliser treatment levels. However, the T1 

and T5 classes were misclassified with one another more than 

with other classes. This was an unexpected yet interesting 

discovery, considering that T1 was not treated with fertiliser 

(control) and T5 was treated with the highest N: P: K input. 

Furthermore, gradient boosting model proved to have excellent 

predictive capability with significantly high accuracy levels 

(70% & 88%). The model identified about 20 important variables 

which extended across the entire range of the spectrum. The 

model’s prediction accuracy improved by 18% when it was re-

run using the important variables. On the other hand, random 

forest showed poor predictive capability with insignificant 

accuracy levels (32% & 37%). The important variables identified 

by RF model were not identical to those selected by GBM – they 

were distributed only between the red, mid-infrared and infrared 

regions of the spectrum. With the use of these important 

variables, classification accuracy of the RF model improved only 

marginally (5%). Unlike the GBM model, RF also does not 

provide the confidence interval (CI) in the results. Therefore, 

there is room for improvement of the RF classification model.  
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