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ABSTRACT: 

The aim of this study was to compare the performances of Landsat and SPOT imagery to map wetland vegetation types in the 

Klipsriviersberg Nature Reserve, South Africa. The Gauteng Conservation Plan 3.3 (C-Plan 3) was used to delineate the boundaries of 

the wetlands in the study area. According to the plan, the proposed study area falls within the Critical Biodiversity Areas (CBA) and 

Ecological Support Areas (ESA). Limited field data were collected within the boundaries of the wetlands during summer 2015 when 

the vegetation cover was relatively high. These data identified features including sparse vegetation, dense vegetation, grassland and 

bare land.Additional samples were added from Google Earth image to increase sample size. Both the field data and Google Earth data 

were used as reference against which the performances of SPOT and Landsat product were compared. Unsupervised classification was 

used to classify SPOT and Landsat images acquired in summer 2015. The results showed that overall accuracy of SPOT images is 

higher than Landsat images. This is attributed to its high spatial resolution of 1.5 m compared to 30 m spatial resolution of Landsat 

imagery. This indicates that SPOT imagery is recommended to map wetland vegetation diversity in a localised area such as the study 

area. The current high temporal resolution of the image has also an added advantage that conservationists should exploit.  

1. INTRODUCTION

Wetlands are important resources which play many functional 

purposes in an ecosystem. They share a common feature of 

retaining excess water, long enough to influence land uses, soil 

characteristics and life forms (Fuggie & Rubbie, 2009). Wetlands 

are therefore considered to be one of the richest biomes that 

support biological diversity and ecological services. They are 

home to large numbers of terrestrial, amphibious organisms and 

birds. Due to their importance to both the environment and 

human beings, wetlands are subjected to enormous pressure from 

both human activities (Bassi, 2016). 

The importance of wetlands and their management has gained 

increasing recognition in many parts of the world (Islam et al., 

2008). Thus, a reliable inventory and map of wetland systems is 

very useful to understand the spatial distribution of different 

wetlands and their linkage with other land units. This will help in 

planning, management and conservation of wetlands (Islam et 

al., 2008; Rebelo & Nagabhatla, 2009). Remote sensing offers 

the opportunity to map and inventory wetlands rapidly and 

consistently, irrespective of the geographic location (Islam et al., 

2008). The approach covers large areas, and is cost- and time 

efficient making it for wetland characterization (Xie et al., 2008). 

Due to lack of efficient monitoring techniques of wetland 

vegetation types, the level of success in protecting wetlands is 

limited (Dutcher, 2013). In Klipsriviersberg Nature Reserve, 

several vegetation surveys have been conducted in the last few 

decades but none produced a practical, useable map for 

environmental management purposes. Therefore, a suitable 

methodology to map vegetation diversity in the wetlands of the 

reserve is to enable efficient management (KNRA, 2015).   

Remote sensing provides useful techniques in characterizing 

wetland ecosystems. Kayastha et al. (2013) used inter-annual 

time series of Landsat data from 1985 to 2009 to map changes in 

wetland ecosystems development, harvesting, thinning and 

farming practices in northern Virginia. The study reported the 

utility of the approach within acceptable degrees of confidence.  

Similarly, Sghair & Goma (2013) used Landsat data, aerial 

photographs and field observations to assess wetland vegetation 

change over time at two contrasting wetland sites (freshwater 

wetland and salt marsh) in the UK. The results showed a 

substantial temporal change in vegetation for the former and a 

slight change in the latter wetland type. The study concluded that 

remote sensing could provide useful baseline data about wetland 

vegetation change over time and across expansive areas, which 

can be instrumental in the management and conservation of 

wetland habitats. Fickas et al. (2016) used Landsat data from 

1972 to 2012 to evaluate wetland change in Willamette River of 

Oregon’s Willamette Valley. The study showed that the wetland 

experienced annual losses and gains due to urbanisation and 

agricultural activities. Such studies have demonstrated the 

performances of remote sensing in characterizing large wetland 

environments. There is a need to apply the technology in smaller 

wetland systems. In this regard, it is important to determine the 

effect of spatial resolution on identifying vegetation types within 

a relatively small wetland area. The main of this study was 

therefore to compare the performance of Landsat and SPOT 

imagery to map wetland vegetation types in the Klipsriviersberg 

Nature Reserve, South Africa. 

2. METHODS

2.1 Study area 

The study area is located within the Klipriviersberg Nature 

Reserve (KNR), which is located 10 km from the centre of 

Johannesburg and 5 km from Soweto (Figure 1). The reserve is 

the largest proclaimed nature reserve in the Johannesburg 

Metropolitan area covering approximately 680 hectares (KNRA, 

2015). The area experiences sub-tropical climatic conditions, 

with the rainy season occurring during the summer months 

(October–April) (Dinar et al., 2012). Vegetation types in the 

reserve are classified as Andesite Mountain Bushveld and a 

section of Tsakane Clay Grassland at its flatter southern end 

(KNRA, 2015). The biodiversity of the reserve is relatively rich 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W2, 2017 
37th International Symposium on Remote Sensing of Environment, 8–12 May 2017, Tshwane, South Africa

This contribution has been peer-reviewed.   
https://doi.org/10.5194/isprs-archives-XLII-3-W2-131-2017 | © Authors 2017. CC BY 4.0 License. 131

mailto:tendozwedzi@gmail.com
mailto:sgtesfamichael@uj.ac.za


 

with approximately 650 indigenous plant species, 215 bird 

species, 16 reptile species and 32 butterfly species.   

Figure 1: Klipsriviersberg Nature Reserve 

2.2 Reference data 

Field data and Google Earth™ image were used as reference data. 

Field data were collected within the boundaries of the Gauteng 

Conservation Plan 3.3, that identifies sites that are critical for 

maintaining biodiversity, during summer season when the 

vegetation cover is relatively high. Thirty sample points were laid 

within the wetland boundaries using a random sampling 

technique. The geographic coordinates of these points were 

recorded using GPS (Global Positioning System) at 3 m 

accuracy. A circular plot with a radius of 30 m was placed around 

each point and within the wetland boundary for sampling 

purpose. A line transect was laid between the centre and the 

periphery of the plot in the north, south, east and west directions. 

Features such as trees, bush, plants, rocks and grass were 

recorded at 10 m interval along each transect line. Due to limited 

data and time, field surveys were not sufficient; therefore, 40 

more samples were increased by interpreting similar features on 

Google Earth™ image acquired during the time of the field 

survey. The Google Earth™ image has high spatial resolution 

(0.5 m) and can be used as a source of reference data (Potere, 

2008; Jaafari & Nazarisamani, 2013). The Google Earth™ image 

was acquired in May 2015 and was obtained from Google Earth 

Pro. The combination of field survey and Google Earth based 

sampling resulted in a total of 70 samples. 

2.3 Remotely-sensed data 

One of the objectives of the study was to compare the 

performance of SPOT 7 and Landsat imagery, both of which 

were acquired in May 2015 to map wetland vegetation types in 

the reserve. SPOT 7 image, which was obtained from South 

African National Space Agency, had a spatial resolution of 1.5 m 

and a temporal resolution of a day (Ozesmi & Bauer, 2002). 

SPOT imagery has been found useful for studying, monitoring, 

forecasting and managing natural resources and human activities 

(Xie et al., 2008). Landsat image were downloaded from the 

United States Geological Survey’s online portal 

(http://earthexplorer.usgs.gov/). The Landsat image was already 

geometrically corrected (Level 1). Landsat images have a 30 m 

spatial resolution and a temporal resolution of 16 days. The 

spectral resolution of Landsat imagery makes it suitable to 

identify vegetation types, health conditions and measure 

reflectance peak of green vegetation (Klemas, 2011). The 

characteristics of the imagery used in this study are presented in 

Table 1. 

Sensor 
Date of 

Acquisition 
Spectral Bands 

Landsat 8 
Operational 
Land Imager 
OLI 

27/05/2015 

Blue, Green, Red, 
Near Infrared, 

Shortwave Infrared 
1, Shortwave 

Infrared 

SPOT 7 12/05/2015 Blue, Green, Red 

Table 1: Characteristics of data used in the study 

2.4 Data analysis 

2.4.1 Image processing 

Both SPOT and Landsat images were made available terrain 

corrected and hence it was unnecessary to apply geometric 

correction. Cloud free images were used to avoid the effects of 

clouds and their shadows on the ground. As a result, atmospheric 

correction was not applied on the images. The images were 

classified to produce thematic maps. Image classification is the 

grouping of pixels into different land cover types based on 

spectral values (Lillesand, 2008). Unsupervised classification 

and ISODATA (Iterative Self Organizing Data Analysis) 

algorithm available in ArcGIS software (ESRI® ArcGIS version 

10.3, Redlands, CA) was used for the classification. 

Unsupervised classification was used because it does not require 

prior knowledge; instead it uses statistical information to assign 

pixels to spectrally distinct classes (Campbell & Wynne, 2011). 

The ISODATA algorithm uses an iterative process in which the 

user defined number of clusters, k, are assigned arbitrary cluster 

means in multidimensional attribute space. All of the data points 

are then assigned to these clusters and new means are 

recalculated for every class. Using these new means, the data are 

then reclassified to the nearest cluster in attribute space and the 

cluster means are recalculated (Karila et al., 2014). This process 

is repeated until a specified maximum number of iterations have 

been performed, or a maximum percentage of unchanged pixels 

have been reached between two successive iterations for a 

specified number of classes (Sghair & Goma, 2013). 

The images were classified into four land cover classes: (1) dense 

vegetation (2) sparse vegetation (3) grass land and (4) bare land. 

Grassland is defined as an area covered by grass species 

especially for grazing, forbs and few or no trees and shrubs 

(Simpson & Weiner, 1989; Schimdt et al., 2002; Kafi et al., 

2014). Sparse vegetation describes an area of land where plant 

growth may be scattered or disperse (Trisakti, 2017). Yuvaraj et 

al. (2014) defines dense vegetation as an area consisting of 

stunted trees or bushes. Bare land is described as exposed soils, 

landfill sites and areas of active excavation (Dewan & 

Yamaguchi, 2009). The classes were interpreted by using 

different band combinations such as including red-green-blue 

(RGB) and (near-infrared-red-green) colour composites. 

2.4.2 Accuracy assessment 

Accuracy assessment is a crucial part of image classification in 

remote sensing, since it evaluates how well a classification 

represents the real world (Congalton, 1991). An accuracy 

assessment was carried out to compare the performances of 

SPOT and Landsat images of May 2015 to map wetland 
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vegetation types in the reserve. The assessment was performed 

by comparing classes derived from SPOT and Landsat with the 

reference data obtained from Google Earth™ image. An error or 

confusion matrix was used to assess accuracies of the SPOT and 

Landsat map. An error matrix is a square array of numbers set out 

in rows and columns which express the number of sample units 

assigned to a particular class relative to the actual class on the 

reference data (Congalton & Green, 2009). The assessment uses 

various statistical tools such as overall, producer’s and user’s 

accuracies as well as Kappa (K-hat) coefficient to determine 

accuracy levels. Overall accuracy is the total classification 

accuracy, and is obtained by dividing the total number of correct 

pixels of all classes by the total number of pixels in the sample. 

Producer’s accuracy is a measure of how well a certain area is 

classified, and is calculated by dividing the number of correctly 

classified points for each class by the number of reference points 

of that category (Congalton & Green, 2009). The user's accuracy 

is a measure of the reliability of the classification or the 

probability that a pixel on a map actually represents that class on 

the ground. It is calculated by dividing the number of pixels 

correctly classified by the total number of pixels categorized in 

that class (Congalton, 1991). Kappa coefficient is a measure used 

to determine whether the results in the error matrix are 

significantly better than a random result (K-hat = 0) (Congalton, 

1991). K-hat is computed using Equation 1 (Congalton, 1991): 

𝐾 =
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦−𝑐ℎ𝑎𝑛𝑐𝑒𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡

1−𝑐ℎ𝑎𝑛𝑐𝑒𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡
.....................Equation 1 

3. RESULTS AND DISCUSSIONS

Figure 2 shows the final maps derived from the two images.  The 

figure demonstrates that bare land cover is more dominant in 

SPOT image than in Landsat image. Further, the figure shows 

that SPOT image is visually smoother compared to Landsat 

derived classes. The overall accuracy and kappa coefficient is 

higher for SPOT image (Table 2) than for Landsat (Table 3). The 

high SPOT overall accuracy and kappa coefficient are attributed 

to its spatial resolution of 1.5 m. According to the guidelines of 

Landis and Kosh (1977) and Fleiss (1981), the kappa coefficient 

obtained for SPOT and Landsat can be considered moderate and 

fair, respectively. Furthermore, SPOT data illustrates that the 

producer accuracies for dense vegetation and grassland is 62% 

and 60% respectively, whereas, user’s accuracies for dense 

vegetation and grassland is 77% and 75% respectively. 

Moreover, SPOT data illustrates that the producer accuracies for 

bare land and sparse vegetation is 80% and 77% respectively, 

whereas, the user accuracies for bare land and sparse vegetation 

in SPOT data is 76% and 66% respectively. These results indicate 

that the classification using SPOT did well to detect dense 

vegetation, grassland, bare land and sparse vegetation. In 

contrast, the producer’s accuracies for bare land, dense 

vegetation, sparse vegetation and grass land were 44%, 82%, 

60% and 47% respectively; while the corresponding user’s 

accuracies were 60%, 81%, 40% and 38%, showing the 

inferiority of classification using Landsat data. 

The findings of this study are consistent with the study by Huili 

et al. (2011) who revealed that SPOT data (2.5 m) had a better 

overall accuracy than Landsat (30 m). Na et al. (2015) used 

Landsat to map wetlands in the Great Zhan River Basin and 

reported a better overall accuracy of 85.97%. However, their 

study included additional data namely synthetic aperture radar 

(SAR) and topographical indices.  

Figure 2: SPOT and Landsat derived classes 

REFERENCE 

BL DV SV GL Total User’s accuracy 

C
L

A
S

S
IF

IE
D

 

BL 20 4 3 2 29 76 

DV 5 17 0 0 22 77 

SV 0 5 10 0 15 66 

GL 0 1 0 3 4 75 

Total 25 27 13 5 70 

Producer’s 

accuracy 
80 62 77 60 

Overall 

accuracy=71%; 

kappa=0.58 

Table 2: SPOT accuracy assessment (BL=Bare land; 

DV=Dense vegetation; SV=Sparse vegetation; GL=Grass land) 

REFERENCE 

BL DV SV GL Total 
User’s 

accuracy 

C
L

A
S

S
IF

IE
D

 

BL 14 2 3 4 23 60 

DV 2 9 0 0 11 81 

SV 4 0 6 5 15 40 

GL 12 0 1 8 21 38 

Total 32 11 10 17 70 

Producer’s 

accuracy 
44 82 60 47 

Overall 

accuracy=53%; 

kappa=0.35 

Table 3: Landsat accuracy assessment (BL=Bare land; 

DV=Dense vegetation; SV=Sparse vegetation; GL=Grass land) 
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4. CONCLUSION

The study revealed that SPOT had a better performance 

compared to Landsat. This is attributed to its high spatial 

resolution of 1.5 m compared to 30 m spatial resolution of 

Landsat imagery. SPOT imagery is therefore recommended to 

map wetland vegetation in localised areas such as the study area. 

Although, Landsat data can still be used as an option since it has 

a better spectral resolution; however methods such as spectral 

pan-sharpening to improve its spatial performance. 
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