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ABSTRACT: 

Sustainable intensification (SI) is a viable pathway to increase agricultural production and improve ecosystem health. Scaling SI 

technologies in locations with similar biophysical conditions enhance adoption. This paper employs novel extrapolation detection 

(ExeDet) algorithm and gridded bioclimatic layers to delineate extrapolation domains for improved maize variety (SC719) and 

inorganic fertilizers (YaraMila-CEREAL® and YaraBela-Sulfan®) in Tanzania. Suitability was based on grain yields recorded in on-

farm trials. The ExeDet algorithm generated three maps: (1) the dissimilarity between bioclimatic conditions in the reference trial 

sites and the target extrapolation domain (Novelty type-1), (2) the magnitude of novel correlations between covariates in 

extrapolation domain (Novelty type-2) and (3) the most limiting covariate. The novelty type1 and 2 maps were intersected and 

reclassified into five suitability classes. These classes were cross-tabulated to generate extrapolation suitability index (ESI) for the 

candidate technology package. An impact based spatial targeting index (IBSTI) was used to identify areas within the zones 

earmarked as suitable using ESI where the potential impacts for out scaling interventions can be maximized. Application of ESI and 

IBSTI is expected to guide extension and development agencies to prioritize scaling intervention based on both biophysical 

suitability and potential impact of particular technology package. Annual precipitation was most limiting factor in largest area of the 

extrapolation domain. Identification of the spatial distribution of the limiting factor is useful for recommending remedial measures to 

address the limiting factor that hinder a technology to achieve its full potential. The method outlined in this paper is replicable to 

other technologies that require extrapolation provided that representative reference trial data and appropriate biophysical grids are 

available.  

1. INTRODUCTION

Food insecurity is a prevalent problem in sub-Sahara 

Africa (SSA) and the situation is worsened by increasing human 

population (van Ittersum et al. 2016). Adoption of improved 

crop varieties that are high yielding and tolerant to drought, 

pests and diseases is one of the promising pathway to increase 

food production (Asfaw et al. 2012, Kassie et al. 2013, Kassie 

et al. 2014, Fisher et al. 2015). These varieties are disseminated 

as technology packages together with appropriate good 

agronomic practices to increase yields and conserve natural 

resource capital (Kihara et al. 2014, Vanlauwe et al. 2014). The 

potential impact and the rates of adoption of these agronomic 

practices can be accentuated if they are disseminated in their 

suitable biophysical environments (Rubiano et al. 2016, 

Muthoni et al. 2017).  

Experimental trials for agronomic technologies are 

undertaken at few selected sites to determine varieties that are 

adapted to specific agro-ecological conditions (Annicchiarico et 

al. 2006). This is followed by scaling out of successful 

technologies for wider adoption. Scaling involves a degree of 

extrapolation to areas where the range of environmental 

variables is beyond that observed in the reference trial sites or 

areas with new combinations of environmental variables (Zurell 

et al. 2012, Owens et al. 2013, Mesgaran et al. 2014). To a large 

extent the environmental conditions determine crop suitability 

(Nijbroek and Andelman 2015). Therefore determining 

environmental dissimilarity can guide spatial targeting of 

agronomic technologies to areas with the highest potential. 

Geographical Information Systems (GIS) and remote sensing 

tools are used to delineate suitability maps (Hyman et al. 2013). 

This paper generates extrapolation suitability index (ESI) 

map as a simple method for visualizing risk associated with 

extrapolating agronomic technologies beyond the environmental 

conditions observed in their trial sites. This is demonstrated 

using agronomic technology package comprising of improved 
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maize variety (SC 719) and relatively new inorganic fertilizer 

blends (YaraMila-CEREAL and YaraBela-Sulfan) in Tanzania. 

The method for generating ESI accounted for the magnitude of 

deviation from univariate range of covariates and the extent of 

novel combinations of environmental covariates between the 

reference site and the projection domain.  This study posits that 

accounting for correlation structure between biophysical 

covariates improves delineation of the risk of extrapolating 

agronomic technologies to novel environments. 

2. MATERIALS AND METHODS

2.1 Study Area 

The study was conducted within five administrative regions of 

Tanzania (Figure 1), covering approximately 277,743 km2 

(31.9oE, -3.4oS; 38.5oE, -10.6oS). The biophysical and socio-

economic conditions of the study area are described by Muthoni 

et al. (2017). 

Figure 1. The location of trial sites for technology package 

comprising of an improved maize variety and inorganic 

fertilizers in Mbozi District, Mbeya region in Tanzania. The 

area with red boundary in the inset map show the projection 

domain targeted for extrapolation 

2.2 Maize varieties and fertilizers in demonstration sites 

Demonstration plots measuring 100 m2 were established 

during the 2015-2016 growing seasons in Mbozi district (Figure 

1). Different agronomic technology packages were 

demonstrated at different villages (Figure 1). However this this 

paper focus on only one technology package comprising of 

SC719 improved maize variety with  YaraMila-CEREAL® and 

YaraBela-Sulfan® fertilizers applied as basal and topdressing 

fertilizers respectively. The suitability of the technology was 

assessed in terms of grain yield harvested at the end of the 

season. 

2.3 Environmental layers 

A set of eight gridded biophysical layers were selected based on 

their known influence on growth of the maize varieties and 

efficiency of inorganic fertilizers (Table 1). The bioclimatic grid 

layers at 1 km spatial resolution were obtained from the 

Worldclim database (Hijmans et al. 2005). A 30 m resolution 

ASTER global digital elevation model (DEM) was acquired 

from NASA website (METI and NASA 2011). Gridded  layers 

for  selected soil chemical properties (Table 1) with a resolution 

of 250 m were downloaded from the World Soil Information 

database (ISRIC 2015).  

    Code Variable name 

DEM Elevation (m) 

Bio1 Annual mean temperature (Co) 

Bio4 Temperature seasonality 

Bio12 Annual precipitation (mm) 

Bio15 Precipitation seasonality (C.V) 

pH Soil pH 

N Soil total nitrogen (g kg-1) 

CEC Cation Exchange Capacity (cmol+/kg) 

Table 1. Input biophysical grid layers 

Figure 2. Flow Chart for the statistical analysis 

2.4 Statistical Analysis 

The procedure for delineating extrapolation suitability 

map for the candidate technology is summarized in Figure 2. 

Prior to analysis all environmental layers were resampled to 1 

km spatial resolution. To avoid multicollinearity between 

environmental covariates, only grid layers with Pearson’s 

correlation values less than 0.6 were included in the analysis. 

Therefore BIO1 and CEC (Table 1) were eliminated from 

further analysis. Grid layers representing the target projection 

domain were clipped to the extent of five administrative regions 

in Tanzania (Figure 1). A three kilometres buffer was created 

around the location of selected trial sites for the candidate 

technology. The resulting buffer polygon was used to extract 

grid layers for the reference trial sites.   

The extrapolation detection algorithm (ExeDet; Mesgaran 

et al. 2014) was used to calculate the dissimilarity between 

environmental conditions in the reference trial sites and the 

target projection domain. ExeDet is a multivariate statistical 

tool that use Mahalanobis distance to measure the dissimilarity 

between a reference site and a projection domain by accounting 

for both the deviation from the mean and the correlation 

between variables (Mesgaran et al. 2014). ExeDet produce 

maps on that quantify the magnitude at which: (1) the range of 
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values individual predictors in the projection domain are 

beyond that observed in the reference sites (Novelty type 1, 

NT1); and (2) the covariates exhibit unique multivariate 

combinations (novel correlation structure) not observed in the 

reference sites (Novelty type 2, NT2). NT1 ranges from zero to 

an infinite negative value with zero indicating no extrapolation 

beyond the univariate coverage of reference data. The lower the 

value is from zero, the more the environmental conditions of a 

location are dissimilar to that in the reference site. Values for 

NT2 map range from zero to an infinite positive value. NT2 

values less than one indicate similarity in terms of multivariate 

combination among covariates, with values closer to zero being 

more similar. Values larger than one indicate novel 

combinations of environmental variables compared to those 

observed in reference sites.  

The ExeDet algorithm was coded in R with minor 

modifications to generate NT1 and NT2 maps. The resulting 

NT1 and NT2 maps were classified into five classes; the first 

class derived from NT1 map represented the zone where all 

univariate covariates were within the reference range (NT1=0). 

The first class in NT2 map indicated zones with no multivariate 

combination of covariates (NT2 =<1). The other four classes in 

each map were derived by dividing the range of values into four 

quantiles. The agreement between the five classes for each of 

the two classified maps was derived using 

’compareClassification’ function in ’greenbrown’ R package 

(Forkel et al. 2015). This returned a map and a table showing 

the shift in classes between the classified NT1 (reference) and 

NT2 maps. The agreement between the two maps was assessed 

using Kappa index of agreement (Cohen 1960), low agreement 

(kappa <0.4) indicates that accounting for correlation structure 

among covariates (NT2) do not improve delineation of the 

extrapolation risk.  

The extrapolation suitability index (ESI) was generated as 

the product of the values for cross-tabulated classes from the 

two maps. The derived suitability ranged from 1 to product of 

maximum number of classes in classified NT1 and NT2 maps. 

Lower values indicate higher suitability for a particular pixel for 

scaling a candidate technology package. Zone with ESI = 1 is 

perfectly similar to the reference area for particular technology 

and therefore is the most suitable for scaling out the candidate 

technology. 

The ExeDet generated a third map of the most influential 

covariate (MIC) that identify the environmental variable that 

induce the highest limit to suitability of a selected  technology 

package in each pixel in the projection domain.  

2.5 Priority setting to maximize potential impact 

Suitability zones defined by ESI represent the biophysical 

suitability and therefore they may exhibit heterogeneity when 

considering the potential socioeconomic impacts of scaling a 

particular technology. Therefore spatial prioritization is needed 

to identify areas within defined suitability clusters that can be 

targeted to maximize the potential impact of adopting a 

technology. The impact based spatial targeting index (IBSTI; 

Muthoni et al. 2017) was used to identify priority clusters in 

zones identified as suitable for specific technology package 

(with low ESI values). IBSTI values range from one to an 

infinite positive value, with higher values indicating more 

potential impact from a technology scaling intervention. Once a 

suitable zone for scaling the candidate technology package was 

identified, based on ESI map, IBSTI values for that zone were 

calculated to pinpoint areas with maximum potential impact. 

3. RESULTS

The NT1 dissimilarity ranged from 0 to -17.5. NT2 

dissimilarity ranged from 0 – 742 with values larger than one 

indicating novel combination of environmental covariates. The 

two dissimilarity maps were reclassified into five suitability 

classes (Figure 3), where class 1 was the most suitable and class 

5 most unsuitable. Cross-tabulation of the two maps revealed a 

poor agreement (Kappa = 0.35). The values of the derived ESI 

map (Figure 4) ranged from 1 to 25 and reflected a decreasing 

suitability gradient from south western to north eastern zones of 

the projection domain. Zones with ESI values 1 and 2 are 

wholly within or immediately surrounding the reference trial 

sites.  

The area with ESI=4 was third best in suitability and formed the 

largest contiguous zone surrounding the reference trial sites 

area. Assessment of potential impact for zone with ESI = 4 

revealed that IBSTI values ranged between 4 and 20 (Figure 5), 

with the higher value reflecting higher potential impact if the 

technology is fully adopted in that zone. 19% (7163 Km2) for 

suitable zone with ESI=4 had IBSTI = 20. The suitability of the 

candidate technology package in 43% and 28% of the 

projection domain was limited by annual precipitation and 

precipitation seasonality respectively (Figure 6). 

Figure 3. Reclassified suitability categories derived from NT1 

and NT2 maps. Class 1 is most suitable since it is wholly or 

partly within the reference trial sites while class 5 is most 

unsuitable. 
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Figure 4. The extrapolation suitability index (ESI) for SC-719 

maize variety and with inorganic fertilizer blend (YaraMila-

CEREAL and YaraBela-Sulfan). ESI value 1 depicts high 

suitability while 25 is least suitable. 

Figure 5. The Impact Based Spatial Targeting index (IBSTI) 

values for zone with ESI = 4. Higher IBSTI value indicates 

more potential impact for scaling candidate technology. 

Technology scaling interventions should prioritize zone with 

IBSTI = 20 to maximize potential impact.  

Figure 6. Map on most important covariate (MIC). The 

suitability of the candidate technology package in 43% and 28% 

of the projection domain was limited by annual precipitation 

and precipitation seasonality respectively. Codes of variables in 

legend are defined in table 1. 

4. DISCUSSIONS

       This paper generates extrapolation suitability index (ESI) 

for quantifying the risk associated with extrapolating agronomic 

technology packages into novel environments. The index was 

developed using yield data for a technology package comprising 

of an improved maize variety (SC719) and a new inorganic 

fertilizer blend (YaramilaCereal + YaraBelaSulfan) in Tanzania. 

The ESI map was derived using a novel extrapolation detection 

method that account for the magnitude at which the univariate 

environmental variables in the projection domains fall outside 

the range of values in the reference sites (NT1; Mesgaran et al. 

2014). It also account for the change in the correlation structure 

of covariates in the projection domain (NT2) compared to that 

observed in the reference sites. The low agreement between 

NT1 and NT2 maps suggest that the two dissimilarity maps 

contributed different information that was incorporated to 

delineate the risk of extrapolating varieties into novel 

environments. This concur with observation by (Zurell et al. 

2012) that failure to account for multivariate correlation 

between environmental variables may lead to erroneous 

predictions when extrapolating to new environments. However 

was largely overlooked in previous studies estimating 

extrapolation domains for agronomic technologies. 

An impact based spatial targeting index (IBSTI) was used to 

identify areas within the zones earmarked as suitable using ESI 

where the potential impacts for out scaling interventions can be 

maximized. Scaling out the candidate technology in the zone 

which the IBSTI value is 20 will achieve the maximum 

potential impact. Application of ESI and IBSTI can guide 

extension agencies to prioritize scaling intervention based on 

both biophysical suitability and potential impact of particular 
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technology package. Delineation of suitable zones for specific 

varieties could support seed producers and agro-dealers to 

estimate the quantity of seeds required to satisfy the expected 

demand (Annicchiarico et al. 2006). 

The generated MIC map identified the most limiting 

factor for a particular technology at different locations of the 

projection domain. Extension agents can utilize information 

provided by MIC map to target management interventions that 

ameliorate the most significant biophysical factor that hinder a 

technology to achieve its full potential. For example, drought 

tolerant maize varieties could be targeted to the large zone that 

was limited by low precipitation as they withstand moisture 

stress.  
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