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ABSTRACT: 

Rangelands which consist of grasslands, shrublands and savannahs are used by wildlife for habitat and are the main source of 

forage for livestock. The assessment and monitoring of rangeland condition is one of the most important factors for rangeland 

scientists in order to calculate the carrying capacity of livestock with consideration for coexisting wildlife. This study assessed 

the potential of Landsat 8 multispectral bands and broadband vegetation indices to model woody vegetation parameters such 

as tree equivalents (TE) and total leaf mass (LMASS) for the Thanda Private Game Reserve using partial least squares 

regression (PLSR). The PLSR model  predicted TE with an  R2 value of 0.76 and a  root mean square error  (RMSE) of  1411 

TE/ha using an independent test dataset. LMASS was predicted with an R2 value of 0.67 and a RMSE of 853 kg/ha on an 

independent test dataset. The predictive models were then inverted to map TE and LMASS over the study area. The modelled 

TE and LMASS layers were integrated with conventional grazing and browse capacity models to map carrying capacity for 

the Game Reserve. The study indicates the potential of Landsat 8 multispectral data in carrying capacity modelling. The result 

is significant for rangeland monitoring in Southern Africa using remote sensing technologies.

1. INTRODUCTION

Rangelands are important natural ecosystems consisting 

of grasslands and savannahs which provide habitat for 

wildlife and grazing areas for domestic stock (Hunt et al., 

2003). The management and monitoring of this critical 

resource is essential to its sustainability. Rangeland 

degradation can be defined as a reduction or loss in 

grassland productivity  due to either over utilization of the 

herbaceous layer or the encroachment of woody plants 

(Rutherford and Powrie, 2010) and can be caused by poor 

landuse management practices (Hoffman and Todd, 

2000). Up to date rangeland information linked to carrying 

capacity is required by rangeland scientists in order to 

optimally manage rangeland resources (Adjorlolo and 

Botha, 2015). Traditional rangeland management 

approaches relies mainly on expert judgment based on a 

limited number of measured observations whereby the 

data is characterized by small sample sizes of restricted 

spatial extent in heterogeneous landscapes (Booth and 

Tueller, 2003). Remote sensing technologies provide the 

opportunity to monitor rangeland parameters at landscape 

level due to advances in sensor development and well 

tested algorithms (Hunt et al., 2003). However the 

integration of conventional grazing and browse capacity 

models and remote sensing datasets has been limited to a 

few studies (Adjorlolo and Botha, 2015, Espach et al., 

2009, Long et al., 2010). This lack of integration is largely 

due to the high costs involved in field data collection, 

inconsistent techniques for calculating grazing and browse 

capacity (Adjorlolo and Botha, 2015) and the cost and 

availability of satellite datasets. With the advent of the 

new Landsat 8 sensor which offers freely available 

imagery at a temporal resolution of 16 days, rangeland 

scientists have the opportunity to monitor and assess 

rangeland health on a regular basis. Furthermore, robust 

indices and algorithms developed from the Landsat 8 

sensor and integration with carrying capacity modelling 

has not been tested to the best of our knowledge. This 

study aims to assess the potential of Landsat 8 

multispectral bands and broadband vegetation indices in 

modelling TE and LMASS as inputs into grazing and 

browse capacity models at Thanda Private Game Reserve.

2. STUDY AREA

The study area is located in the Umkhanyakude district 

municipality of South Africa and covers an area of 

approximately 13 668 ha. The Thanda Private Game 

Reserve receives an average rainfall of about 647 mm per 

anum (Schulze and Lynch, 2007) along an altitudinal 

gradient that ranges from 140 to 660m above sea level 

(Schulze and Horan, 2007). The mean annual temperature 

of the reserve is 20 degrees Celsius (Schulze and Maharaj, 

2007). The dominant vegetation type is the Zululand 

Lowveld (SVI 23) comprising mainly of flat to slightly 

undulating landscapes with dense Dichrostachys cinerea 

thickets, Acacia sp. savannahs, and tree-dominated 

woodland with broadleaved open bushveld (Scott-Shaw 

and Escott, 2011). Figure 1 shows a map of the study area. 
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Figure 1. Study area 

3. METHODS

3.1 Field sampling 

Woody plant sampling was carried out in February and 

March 2016 whereby 40 stratified random sampling plots 

where generated across the reserve. The sampling plots 

were characterized by two parallel 25m x 2.5m belt 

transects along opposite sides of the sampling plot. All 

woody plants within the belt transect were identified and 

their growth form was characterized. Measurements were 

made using a ranging rod and consisted of: 

 Maximum tree height (m)

 Height of the maximum canopy (m)

 Height of minimum canopy (m)

 Maximum canopy diameters (m)

 Minimum canopy diameters (m)

The field measurements were analysed using the biomass 

estimates from canopy volume (BECVOL) model (Smit, 

1996) which was developed for assessing relationships 

between woody plant dimensions and its aboveground 

biomass. The BECVOL model generates several woody 

plant outputs consisting of tree equivalents (TE) per 

hectare and leaf mass (LMASS) in kilograms at different 

height classes (Adjorlolo and Botha, 2015). The TE and 

LMASS data for each plot were then integrated with 

Landsat 8 spectral data to model TE and LMASS across 

the reserve.

3.2 Landsat 8 imagery 

One scene of Landsat 8 multispectral data covering the 

reserve with an image pass of 2nd February 2016 was 

acquired from the United States geological Survey 

(USGS) earth explorer website. The scene was 

atmospherically corrected to top of atmosphere 

reflectance using the FLAASH (Fast Line-of-Sight 

Atmospheric Analysis of Spectral Hypercubes) algorithm 

built in the ENVI (Environment for Visualising Images: 

ENVI, 2006) software. Landsat 8 Operational Land 

Imager (OLI) and Thermal Infrared Sensor (TIRS) data 

consists of 9 spectral bands. Bands 10 and 11 are the 

thermal bands which are used for surface temperature 

estimates and are collected at 100 metres (USGS, 2014). 

The spectral and spatial resolution of the Landsat 8 sensor 

is shown in Table 1.  

Table 1. Spectral and spatial resolution of Landsat 8 

3.3 Vegetation Indices 

Two commonly used broadband vegetation indices 

(Equation 1 and 2) were calculated from the Landsat 8 

imagery. The Normalized Difference Vegetation Index 

(NDVI) (Rouse et al., 1973) uses the red and near-infrared 

band of the electromagnetic spectrum to assess changes in 

vegetation phenology as it uses the highest absorption and 

reflectance of the chlorophyll region. The Simple Ratio 

(SR) (Jordan, 1969) is the ratio of the near-infrared and 

red bands and is used to assess changes in green vegetation 

cover. 

NDVI = 
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
 (1) 

SR = 
𝑁𝐼𝑅

𝑅𝐸𝐷
 (2) 

3.4 Modelling TE and LMASS using partial least 

squares regression and Landsat 8 data 

The reflectance data from the Landsat 8 bands and the two 

broadband vegetation indices were extracted from the 40 

field sampling plots and input into a partial least squares 

regression algorithm in order to model TE and LMASS 

across the study area. The forty sampling plots were 

randomly divided in two sets whereby 50% of the dataset 

was used for training the model and the remaining 50% 

was used for validation. PLS regression is a bilinear 

calibration method which reduces a large number of 

measured collinear variables to a few non-correlated latent 

variables or factors (Geladi and Kowlski, 1986, Cho et al., 

2007). The PLS model finds a few PLS factors that explain 

a large amount of variation in both the response and 

predictor variables (Tobias, 1995). The PLS model is 

formulated as: 

Bands Spectral 

Range 

(micrometres) 

Spatial 

Resolution 

(metres) 

1- Coastal aerosol 0.43-0.45 30 

2- Blue 0.40-0.51 30 

3- Green 0.53-0.59 30 

4- Red 0.64-0.67 30 

5- NIR 0.85-0.88 30 

6- SIR1 1.57-1.65 30 

7- SIR2 2.11-2.29 30 

8-Panchromatic 0.50-0.68 15 

9-Cirrus 1.36-1.38 30 

10-TIR 1 10.60-11.19 100 

11-TIR 2 11.50-12.51 100 
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 Y = XB + E,  (3) 

where Y is the matrix containing the response variable (TE 

and LMASS), X is the matrix containing the predictor 

variables (Landsat 8 bands and vegetation indices), B is 

the matrix containing the regression coefficients, and E is 

the matrix of the residuals (Cho et al., 2007). PLS 

regression was performed using the training dataset and v-

fold cross validation was used to select the optimal 

number of factors and was repeated 10 folds 

(Hoskuldsson, 2003). The cross validation estimates the 

predictive residual sum of squares (PRESSs) statistic, for 

each factor and selects the models with least error. The 

PRESS is calculated for the final model with the estimated 

number of significant factors and is often re-expressed as 

Q2 (the cross validated R2) (Wold et al., 2001). The cross 

validated PLS model was then extrapolated to map TE and 

LMASS across the study area. The predictive accuracy of 

the modelled map was assessed using the coefficient of 

determination (R2) and the root mean square error (RMSE) 

on the independent 50% test dataset. 

3.5 Integrating tree equivalents and leaf mass with 

graze and browse capacity models 

The predicted TE layer was input into a grazing capacity 

equation in order to model grazing capacity across the 

study area. Grazing capacity was calculated as follows 

(Camp and Hardy, 1999):  

Grazing capacity = 
𝐷 𝑥 𝑅

{[( 𝑀𝐴𝑅 𝑥 0.9) 𝑥 (
𝑅𝐶
100 𝑥  5)] 𝑥 𝑊 𝑥 𝐴}

2

 (4) 

Where D is the utilization period in days (365 days per 

anum), R is the requirement of an animal unit per day (one 

animal requiring 10 kg dry matter per day), MAR is the 

mean annual rainfall, RC is the range condition, W is the 

woody species impact factor based on the modelled TE 

layer and A is the accessibility factor based on slope 

classes. Grazing capacity is expressed in hectares per 

animal unit (AU) where AU is defined as an animal with 

a mass of 450 kg, which gains 0.5 kg per day with a 

digestible energy percentage of 55 % (Meissner, 1993). 

The predicted LMASS layer was input into a browse 

capacity equation in order to model browse capacity over 

the reserve. Browse capacity was calculated as follows 

(Smit, 2009): 

 Browse capacity = 
𝐷 𝑥 𝑅

𝐿𝑀𝐴𝑆𝑆ℎ 𝑥 𝐹 𝑥 𝑃
 (5) 

Where D is the utilization period in days (365 days per 

anum), R is the requirement of an animal unit per day (one 

animal requiring 10 kg dry matter per day), 𝐿𝑀𝐴𝑆𝑆ℎ is the

modelled leaf mass expressed at various height classes, F 

is the utilization factor (25 %) based on the percentage of 

available leaf material utilized by the browsing animal, 

and P is the phenology factor of (0.744) based on the 

availability of browse material available throughout the 

year. 

4. RESULTS

4.1 Tree equivalents and leaf mass measurements

Table 2 shows the descriptive statistics for the TE and 

LMASS measurements. TE ranged from 1166 to 10936 

TE/ha and LMASS ranged from 161 to 6232 kg. TE and 

LMASS showed a range in values and this can be 

attributed to the variation in vegetation types across the 

reserve. Figure 2 shows the mean Landsat 8 reflectance for 

the TE and LMASS plots showing a normal spectral 

vegetation curve. 

Variables Mean Minimum Maximum Range 

TE 4732 1166 10936 9770 

LMASS 1943 161 6232 6071 

Table 2. Descriptive statistics for TE and LMASS 

measurements 

Figure 2. Mean vegetation reflectance from Landsat 8 

bands (n=40) showing the mean, 95% upper confidence 

limit (UCL), and 95% lower confidence limit (LCL) of 

the reflectance 

4.2 Predicting TE and LMASS with Landsat 8 bands 

and vegetation indices using PLS regression 

Table 3 shows the performance of the PLS regression 

models in predicting TE and LMASS using the training 

dataset. The PLS algorithm extracted two factors and 

predicted TE with and R2 value of 0.54. LMASS was 

predicted with an R2 value of 0.62 using two PLS factors. 

The PLS algorithm produces variable importance (VIP) 

scores that are used to select the relevant predictors in the 

model according to the magnitude of their values (Chong 

and Jun 2005, Palermo, Piraino, and Zucht 2009). Figure 

3 shows the variable importance in the projection (VIP) 

for the TE and LMASS. 

Table 3. Performance of PLS models in predicting TE 

and LMASS 

Variables Number of PLS 

factors 

Training 

(R2) 

Q2 

TE 2 0.54 0.35 

LMASS 2 0.62 0.48 
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Figure 3. (a) VIP variables for TE. The red line indicates 

the VIP cut off value of 1. All predictors above the red 

line are significant in the model 

Figure 3. (b) VIP variables for LMASS. The red line 

indicates the VIP cut off value of 1. All predictors above 

the red line are significant in the model 

4.3 TE and LMASS mapping 

The PLS models for TE and LMASS were inverted to map 

TE and LMASS over the study area. Figure 4 shows the 

predicted TE and LMASS layers. The performance of the 

PLS model in predicting TE and LMASS layers was 

evaluated using the R2 and the RMSE on the independent 

50% test dataset (Figure 5).  

Figure 4. (a) Predicted TE map 

Figure 4. (b) Predicted LMASS map 

Figure 5. (a) Performance of the PLS models in 

predicting TE on the independent test dataset 

Figure 5. (b)  Performance of the PLS models in 

predicting LMASS on the independent test dataset 

4.4 Integrating TE and LMASS with grazing and 

browse models 

The predicted TE and LMASS layers were input into 

graze and browse capacity models to model grazing and 

browsing potential across the study area Figure 6. 
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Figure 6. (a) Modelled graze capacity 

Figure 6. (b) Modelled browse capacity 

5. DISCUSSION

5.1 Modelling TE and LMASS with Landsat 8 bands 

and indices 

TE and LMASS were modelled with relatively high 

accuracies of 0.76 and 0.67 on an independent test dataset 

using PLS regression. The TE had a RMSE of 1411 TE/Ha 

and the LMASS had a RMSE of 853 kg/ ha. The VIP 

scores for TE showed that the Shortwave Infrared band 2 

was the best predictor in the model with a VIP score of 

1.28 followed by the NDVI with a score of 1.23 and the 

SR index with a score of 1.18. The VIP scores for the 

LMASS indicated that the best predictor in the model was 

the SR index with a score of 1.26 followed by the 

shortwave infrared band 2 with a score of 1.20 and then 

the NDVI with a score of 1.20. The shortwave infrared 

region is sensitive to vegetation water content as it has 

strong water absorption bands at 1940 and 2500 nm 

(Carter, 1991, Datt, 1999). The NDVI index which is 

based on the near-infrared region is widely used to assess 

vegetation properties and is sensitive to changes in plant 

growth and vigour (Penuelas and Filella, 1998). The 

modelled result is comparable to the earlier work done by 

Adjorlolo and Botha (2016) who predicted TE with an R2 

value of 0.55 and LMASS with an R2 value of 0.64 using 

SPOT 5 data and the random forest algorithm. Adjorlolo 

and Botha (2016) found that the modelled TE and LMASS 

improved the detail in the grazing and browse capacity 

layers  as compared to the expert opinion and field 

surveyed method which generalized the graze and browse 

outputs. This is also true for the Landsat 8 derived product 

whereby the PLS algorithm identified significant factors 

which explain most of the variation in the dataset in 

predicting TE and LMASS.  The study indicates the 

potential of broadband vegetation indices derived from the 

Landsat 8 sensor to spatially model woody vegetation 

properties across the reserve. 

5.2 Integrating TEs and LMASS to model grazing and 

browsing across the reserve 

The setting of stocking rates is one of the most important 

decisions for rangeland managers (Hunt et al., 2003) and 

this is often achieved through field measurements which 

indicate the composition and density of herbaceous and 

woody plant biomass at a single point in time and at low 

spatial distribution (Espach et al., 2010) resulting in the 

homogenisation of resultant values. The benefit of using 

remote sensing derived spatial layers in the modelling of 

carrying capacity at finer scales translates into more 

accurate stocking rate estimates and improves the 

potential for detailed home range analysis of high value 

ungulate species. The relatively coarser pixel resolution of 

Landsat 8 compared to Spot 5 and Spot 6 renders it less 

sensitive to noise emanating from structural heterogeneity 

in savannah dominated landscapes. Furthermore Landsat 

8 data has the additional benefit of been freely available 

and the higher temporal availability allows for 

investigating temporal changes in vegetation structure and 

condition by researchers in governmental and non-profit 

agencies. Accurate plant measurements are required on a 

regular basis and this is impractical in large areas due to 

the effort, time and expenses involved. Satellite imagery 

is a more practical and efficient method of acquiring 

variation in biomass production over time (Ganzin et al., 

2005). The integration of multi temporal imagery 

consisting of broadband vegetation indices and 

conventional graze and browse capacity models allows for 

carrying capacity to be modelled on a seasonal basis. This 

study showed the potential of integrating modelled TE and 

LMASS data derived from the Landsat 8 sensor to model 

graze and browse capacity across the reserve. With the 

temporal resolution of the Landsat 8 sensor been every 16 

days, rangeland managers have the opportunity to monitor 

the rangelands on a more frequent basis.  

6. CONCLUSION

The aim of this research was to assess the potential of the 

Landsat 8 sensor in modelling TE and LMASS as inputs 

into grazing and browse capacity models. The Landsat 8 

bands and broadband vegetation indices modelled TE and 

LMASS with R2 value of 0.76 and 0.67 on independent 

test datasets. The TE and LMASS layers were input in to 

conventional graze and browse capacity models to model 

carrying capacity across the reserve. The study shows the 

potential of integrating multispectral remote sensing and 

rangeland information to model carrying capacity. The 

result is significant for rangeland monitoring in South 

Africa using freely available Landsat 8 multispectral 

datasets. 
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