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ABSTRACT: 

The Agricultural Resources Extraction from LiDAR Surveys (PARMAP) project component of the Nationwide Detailed Resources 

Assessment using LiDAR (Phil-LiDAR 2) Program aims to produce detailed agricultural maps using LiDAR. Agricultural land 

cover at crop level was classified through object based image analysis using Support Vector Machine as classifier and LiDAR 

derivatives from point cloud (2 points per sq.m.) and orthophoto (0.5-meter resolution) as inputs. An accuracy of at least 90%, 

assessed using validation points from the field and through image interpretation, was required before proceeding to post-processing 

and map lay-out. Knowledge sharing and capacity development facilitated by the University of the Philippines Diliman (UPD) 

enabled partner universities across the Philippines to produce outputs for their assigned region. Considering output layers were 

generated by multiple teams working on different landscape complexities with some degree of data quality variability, quality 

checking is crucial to ensure accuracy standards were met. UPD PARMap devised a centralized and end-to-end scheme divided into 

four steps – land classification, GIS post-processing, schema application, and map lay-out. At each step, a block is reviewed and, 

subsequently, either approved or returned with documentation on required revisions. Turnaround time of review is at least one block 

(area ranging from 10 to 580 sq. km.) per day. For coastal municipalities, an additional integration process to incorporate mapped 

coastal features was applied. Common problems observed during quality checking include misclassifications, gaps between features, 

incomplete attributes and missing map elements. Some issues are particular to specific blocks such as problematic LiDAR 

derivatives. UPD addressed these problems through discussion and mentoring visits to partner universities. As of March 2017, a 

total of 336 municipal agricultural maps have been turned-over to various stakeholders. For the remaining months of the program, an 

additional 360 maps are expected to be distributed. 

1. INTRODUCTION

For the last three years, the Nationwide Detailed Resources 

Assessment using LiDAR (Phil-LiDAR 2) Project 1 

Agricultural Resources Extraction from LiDAR Surveys 

(PARMap) was able to develop algorithms and workflows for 

extracting agricultural features from LiDAR point cloud data. 

The end-to-end workflow from land cover classification of 

LiDAR blocks to map lay-out undergoes rigorous processing 

and quality checking. Quality checking is crucial to ensure 

accuracy standards are met across outputs of all partner state 

universities and colleges (SUCs) and higher education 

institutions (HEIs). Given that output layers were generated by 

multiple teams working on different landscape complexities 

with some degree of data quality variability, the University of 

the Philippines Diliman (UPD), the lead agency in 

implementing the project, devised a centralized and monitored 

quality assessment scheme. 

2. THE PHIL-LIDAR 2 PROGRAM AND PARMAP

The Philippines launched its Phil-LiDAR 2 Program in 2014 

with the goal of providing accurate and detailed resource maps 

for national agencies and local government units, 

complementing existing programs. The Program was funded by 

the Department of Science and Technology (DOST) and jointly 

managed by UPD and the DOST Philippine Council for 

Industry, Energy, and Emerging Technology Research and 

Development (DOST-PCIEERD). It aims to develop 

methodologies for extracting resource features from LiDAR 

data. The Program is a collaboration between fifteen (15) 

SUC/HEIs led by UPD. UPD is primarily assigned to spearhead 

the development of workflows and algorithms and capacitate 

partner SUC/HEIs through knowledge sharing in order to 

implement resource mapping in their assigned area (Blanco, 

Tamondong, Perez, Ang, & Paringit, 2015; Blanco et al., 2016; 

Pagkalinawan et al., 2017). 

The fourteen (14) partner SUC/HEIs are Mariano Marcos State 

University (MMSU), Isabela State University (ISU), Central 

Luzon State University (CLSU), Mapua Institute of Technology 

(MIT), University of the Philippines Los Baños (UPLB), 

Ateneo De Naga University (ADNU), University of the 

Philippines Cebu (UP Cebu), University of San Carlos (USC), 

Visayas State University (VSU), Ateneo De Zamboanga 

University (ADZU), Mindanao State University – Iligan 

Institute of Technology (MSU-IIT), Caraga State University 

(CSU), Central Mindanao University (CMU) and University of 

the Philippines Mindanao (UP Min). 
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PARMap is one of the five project components of the Phil-

LiDAR 2 Program. It aims to provide an updated and detailed 

inventory of agricultural resources in the Philippines by 

developing methodologies for mapping such resources using 

LiDAR and other geospatial technologies such as optical 

imagery. Two of the project’s specific objectives are to develop 

algorithms and workflows for extracting and characterizing 

agricultural features (various crops, trees, etc.) from LiDAR 

data and other remotely-sensed data, and field measurements 

and to produce detailed maps of agricultural resources as well 

as those facilities related to agriculture (Blanco et al., 2015; 

Blanco et al., 2016; Pagkalinawan et al., 2017). Production of 

agricultural land cover maps is divided into four (4) processes 

namely land cover classification, GIS post-processing, schema 

application and map lay-out. 

2.1 Land Cover Classification 

Extraction of agricultural classes and other land cover types 

from LiDAR dataset was performed by applying object based 

image analysis (OBIA) using LiDAR point cloud with a density 

of 2 points per meter and orthophoto with resolution of 0.5 

meter (depending on data availability).  Analysis was carried 

out in eCognition, a specialized software for object based image 

analysis (Carranza, Tañada, Jerez, & Blanco, 2015; Rollan, 

Carranza, Jerez & Blanco, 2015).  Figure 1 shows the general 

flowchart used by PARMAP in classifying LiDAR data. 

Figure 1. General Flowchart of LiDAR Data Classification 

Unlike traditional pixel based classification, object based image 

analysis starts by segmenting the data into objects. An object is 

a group of several pixels with similar properties and is assigned 

a single class. Creation of meaningful objects can be achieved 

by different segmentation types. Inherent size of the objects is 

considered in selection of the segmentation scheme performed 

(Blaschke, 2010). Training points are then selected and 

imported into eCognition. Spectral, textural and geometric 

characteristics of objects were used for classification. 

Supervised classification was used using different 

characteristics of the objects from the different image layers. 

Accuracy of results was assessed by a separate set of validation 

points that was also assigned to the objects created (Carranza at 

al., 2015). 

Classification was run using support vector machine classifier. 

Support vector machine (SVM) belongs to a class of machine 

learning algorithms based on the concept of decision planes that 

define decision boundaries. In feature extraction, a decision 

plane is a plane that separates between a set of objects having 

different class memberships. Points closest to the margin are 

called support vectors and are used for the training phase of 

classification (Huang & Townshend, 2002; Mountrakis & 

Ogole, 2011; Pal & Mather, 2005). 

Figure 2. Principle behind Support Vector Machine 

2.2 GIS Post-Processing 

After land cover classification using LiDAR datasets, post 

processing procedures were implemented to create agricultural 

land cover maps. A minimum mapping unit (MMU) was 

determined based on the smallest recognizable feature in the 

classification. There were a number of factors that should be 

considered in order to determine the appropriate MMU. These 

include data resolution, map scale, classification, print size, 

pixels per inch (PPI) and viewing distance. Data resolution 

refers to the corresponding ground dimension of a single pixel 

while map scale is the ratio between the map distance and its 

corresponding ground distance (Gatdula et al., 2017). 

2.3 Schema Application 

Schema pertains to the structure of a dataset or design of a 

database, documented in a data dictionary that defines the 

objects in databases, tables, fields in the table, and the 

relationships between fields and tables. Attribute domain is 

used to constrain values in a particular table attribute, declaring 

and limiting acceptable values to ensure data integrity. 

Providing a standardized schema is important to ensure 

usability of data for future researchers and applications (Gatdula 

et al., 2017). Table 1 shows a portion of the reference table of 

land use/ land cover (LULC) for PARMap Schema 

LULC 

Class 

Description LULC 

Type 

Description 

Grain 

crop 

This class 

applies to 

planted/cultiv

ated areas 

used for the 

Corn 
This type applies to 

corn grain crops 

Rice This type applies to 
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production of 

grain crops 

rice grain crops 

Tree 

crop 

This class 

applies to 

planted/cultiv

ated areas 

used for the 

production of 

fruit tree 

crops 

Banana 
This type applies to 

banana 

Mango 
This type applies to 

mango crops 

Barren 

This class 

describes 

areas that are 

characterized 

by bare rock, 

gravel, sand, 

silt, clay with 

less than 4% 

vegetation 

cover 

Bare/ 

fallow 

This type describes 

perennially bare 

areas of bedrock, 

volcanic material, 

debris etc.; areas 

that are idle for less 

than 5 years or are 

not seeded for one 

or more growing 

seasons;  

Water 

This class 

describes 

areas that are 

water covered 

Water 

This type applies to 

open water areas, 

artificial 

impoundments, 

naturally enclosed , 

non-flowing  and 

linear bodies of 

water 

Table 1. Portion of the Reference Table of Land Use/ Land 

Cover (LULC) for PARMap Schema 

2.4 Map Lay-out 

Using an ArcMap file template, a custom-map scale of the 

municipality can be produced. Maps are exported after elements 

were modified and completed. In addition, Data Driven Pages 

(DDP) and ArcPy, a Python scripting module that automate 

exporting and printing maps, were used to generate a series of 

10K extent maps on a single layout by iterating over the index 

layer or the map extent. Figure 3 shows a sample output map of 

PARMap. 

Figure 3. PARMap Template for Agricultural and Coastal Land 

Cover Map 

3. QUALITY CHECKING AND ASSESSMENT OF

OUTPUTS 

PARMap created procedures on evaluation of output of each 

SUC/HEI. For land cover classification, LiDAR derivatives, 

image segmentation results, use of training and validation 

points, classification rule sets, and obtained classification 

accuracies were checked to ensure that the processes 

implemented by each SUC/HEI are correct. In addition, 

selection of MMU size, presence of gaps, incomplete schema 

and mapping elements standards are also checked. Feedbacks 

are sent to designated focal persons. The SUCs/HEIs are 

expected to address the comments and adjust their procedures 

accordingly. A turn-around time of at least one submission 

review per day per SUCs/HEIs was committed. In addition, a 

dedicated checker is assigned per SUC/HEI in order to have 

consistency in reviews. This scheme will give a general idea on 

whether a particular SUC/HEI has been improving in terms of 

the quality and quantity of outputs. 

3.1 Common and Exceptional Errors 

Throughout the duration of quality checking and assessment, 

errors, both common ones and those particular to certain cases, 

have been identified. Common errors were provided with 

standard solutions while exceptional errors were handled on a 

case-to-case basis. 

3.1.1. Common Errors in Land Cover Classification: The 

quality of land cover classification depends on the quality and 

usefulness of LiDAR derivatives used as inputs. Similarly, the 

amount spent in processing is proportional to the number of 

derivatives used. Thus, it is important to select and limit the 

input layers into useful and meaningful ones only. Intensity 

derivatives are the useful for ground classes while height 

derivatives are suitable for non-ground classes. Other useful 

layers are number of returns, curvature, difference between the 

first and last return, textural features using gray level co-

occurrence matrix and statistical features including mean, mode, 

quantile and standard deviation. Errors usually arises when 

these layers are not used accordingly during segmentation and 

classification. At times, processing takes longer time due to the 

use of unnecessary additional layers. 

OBIA starts with segmentation, thus, it is a common mistake to 

undersegment or oversegment objects (see Figure 4). 

Undersegmentation happens when objects produced are not 

homogenous, i.e., object contains two distinguishable land 

cover. On the other hand, oversegmentation is characterized by 

separate multiple objects representing a supposedly single 

object. Undersegmentation is addressed by running another 

level of segmentation with a smaller object size while 

oversegmentation is solved by resegmenting the object using a 

larger scale. 
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Figure 4. Sample Cases of Undersegmentation (top) and 

Oversegmentation (bottom) 

Since training and validation points are pivotal to produce 

classification within standards, errors in their selection should 

be avoided (see Figure 5). These include imbalance in the 

number of points per class, clustering of points within the same 

location, duplication of training and validation points within the 

same object and incorrect location or classification. Data 

collection was done through fieldwork, supplemented by data 

from orthophoto, satellite images and Google Earth. It is 

imperative for both field observers and processor to be accurate 

in assigning location and classification for these points. Quality 

of validation points should be prioritized over its quantity. 

Figure 5. Sample Case of Erroneous Collection and Assignment 

of Training and Validation Points 

Rulesets used in classification can be a combination of 

classifiers, rule-based algorithms and use of thematic layers. 

However, each should be used appropriately. Classifiers are 

primarily used to identify specific land cover such as crops, 

trees and bare land. Rule-based algorithms are applicable in 

separating classes with clear boundaries e.g. ground and non-

ground classes. Lastly, use of thematic layers is allowed for 

water, roads and buildings. Manual classification is allowed in 

extreme cases wherein certain objects are not identifiable using 

the three aforementioned techniques. The iterative nature of 

SVM classified can be tedious for some processors which 

results to them relying heavily on manual classification. This 

practice is strongly discouraged since it defeats the purpose of 

unbiased classification. 

Figure 6. Sample Rulesets with Numerous Manual 

Classification and Rule-Based Refinements 

To assess the accuracy of classification, accuracy matrix is 

computed using the selected training points. Overall accuracies 

and individual accuracies should be greater than 90% unless 

layers are problematic. Kappa index of agreement (KIA) should 

also be greater than 0.9. Reporting of accuracies of 100% is 

avoided since there is no assurance that all corresponding 

objects of a particular land cover are properly classified. Errors 

are usually committed when submitted classification have either 

accuracies below standard or perfect ones. In some cases, a non-

ground points are misclassified into ground class and vice-versa 

due to misclassification of validation points. 

3.1.2 Exceptional Errors in Land Cover Classification: 

Some errors are arising from inherent problems of LiDAR 

derivatives. These problems originate during data acquisition 

and pre-processing. Solutions specific to this problems are 

provided on a case-to-case basis and as the need arises. Some of 

these encountered errors are translational shift between LiDAR 

derivatives and orthophoto, triangulation error from point cloud 

data, misclassification of point cloud data and “overexposed” or 

blurry LiDAR derivatives (see Figure 7). 

Figure 7. Sample Errors Particular to Certain Blocks; 

Misclassified Buildings from LiDAR Point Cloud Data (top) 

and Blurry LiDAR derivatives (bottom) 

3.1.3 Errors in GIS Post-processing, Schema Application 

and Map Lay-out: After land cover classification, the LiDAR 

blocks will undergo a series of cartographic procedures in order 

to convert them to agricultural land cover maps. These 

processes are considered procedural in nature, however, errors 

are still encountered at each stage. 
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Selection of MMU is dependent on the processor based on the 

sample cases of significant map feature provided by UPD 

PARMap. However, there are some instances wherein the 

selected MMU is either too large or too small (see Figure 8, 

left). An MMU that is too large will result in overgeneralization 

of classes whereas a MMU that is too small will not be able to 

remove insignificant objects. Another common error is the 

presence of gap when smoothing polygons (see Figure 8, right). 

This is remedied by lowering the value of the smoothing 

tolerance. 

Figure 8. Common Errors in GIS Post-processing; Insignificant 

MMU Size (left) and Gaps between Polygons (right) 

Both schema and map lay-out have been provided with 

templates to ensure that the content and appearance of map and 

digital file (shapefiles and KML) outputs of all SUC/HEIs are 

uniform. Presence of NULL values in attribute table is checked 

to verify if all the required field columns are properly filled out. 

Map elements are also checked to guarantee the overall 

cartographic quality. Figure 9 shows an attribute table with 

NULL values while Figure 10 shows examples of erroneous 

map elements. 

Figure 9. Sample Schema with NULL Values 

Figure 10. Sample Errors in Map Lay-Out (a) Scale Used not a 

Multiple of 500, (b) Index Map not Showing Adjacent 

Municipalities, and (c) Data Frame not Showing All Classified 

LiDAR Coverage 

4. SUC/HEI CAPACITY AND PERFORMANCE

EVALUATION 

4.1 SUC/HEI CAPACITY 

Each partner SUC/HEIs hired researchers who implement the 

process from land cover classification to map layout. Their 

backgrounds and experiences include engineering, sciences, 

information technology, agriculture and forestry (see Figure 

11). A total of 111 researchers composed the whole PARMap 

team, this a mix of those working full time on PARMap tasks 

and others who are also engaged in other Phil-LIDAR 2 

components. 

 Figure 11. Researchers Background 

(a) (b) 

(c) 
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4.2 SUC/HEI PERFORMANCE 

From January 2016 to March 2017, a total of 2,886 submissions 

were recorded in the monitoring sheet of PARMap for quality 

checking and assessment. These were combinations of land 

cover classification, post-processing, schema and map lay-out. 

Spreading across 65 weeks, an average of 9 reviews was sent 

out per day. 

Figure 12. QA/QC Statistics based on Number of Submissions 

As shown in Figure 12, about 55% or 1,588 submissions were 

approved while the rest were advised to be reprocessed for 

revisions. The weekly average number of submissions per 

SUC/HEI is 3.17 or a total of 206 submissions weekly for the 

whole project. Only 6 out of 14 SUC/HEIs reached this value. 

The three universities with the lowest percentage approval are at 

middle of the ranking based on number of submissions. 

Interestingly, university A, who had the least number of 

submissions, ranked 4th in terms of percentage approval while 

university N, who submitted the most number of blocks, had 

average percentage approval. 

However, block size differs in area coverage and are being 

subdivided into smaller blocks by some SUC/HEI. Thus, a 

better indicator of outputs is through area coverage of approved 

submissions (see Figure 13). These are also classified to the 

four categories of submissions.  In terms of area coverage, three 

SUC/HEIs have a total approved area greater than 9,000 sq. km. 

Coincidentally, the three universities with the lowest number of 

submissions also have the least area approved. 

Figure 13. QA/QC Statistics based on Area of Submitted Blocks 

Scatterplots of the number of submissions and approved area 

against the percentage approval showed the quality and quantity 

of outputs of all SUC/HEI (refer to figure 14). Those at the 

lower left part of the plot are SUCs/HEIs which have low to 

average number of output as well as low approval rate. Those at 

the lower right are characterized by low to average number of 

outputs but high approval rate. Lastly, those in the upper 

portion indicate both high number of outputs and percentage 

approval. 

Figure 14. Scatterplot of Percentage Approval vs Number of 

Submitted Blocks (top) and Percentage Approval vs Approved 

Area (bottom) 

Among the four kinds of submissions, land cover classification 

was deemed to be the most crucial and difficult part. It is at this 

stage that most of the revisions were implemented. Thus, it is 

also worth looking at the approval rate of each SUC/HEIs’ land 

cover classification. Classification submissions were grouped 

according to which stage their were approved, e.g., initial, first 

revision etc. Six SUC/HEIs have at least 40% of their outputs 

approved at initial submission, above the group average of 36%. 

On the other hand, three SUC/HEIs have less than 20% of their 

outputs approved at initial submission (see Figure 15). 
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Figure 15. Breakdown of Land Cover Classification 

Submissions 

Correlating the researchers’ background with their respective 

SUC/HEI performance, the better faring universities (A, B, I 

and M) have researchers whose background is from 

engineering, sciences, and information technology. Among the 

four, only university M has more than 7 researchers. However, 

universities C, F and K who also have researchers from the 

same fields have low to average output generation. On the other 

hand, universities with researchers who have background in 

geospatial technologies, e.g. geodetic engineering such as D, E, 

H, J and L have varying performance from low to average 

output generation and from low to high approval rate. 

4.3 STATUS OF SUC/HEI OUTPUT MAPS 

By the end of March 2017, a total of 336 agricultural land cover 

and agricultural coastal land cover maps have been prepared by 

the project and turned over to the respective LGUs. 360 more 

are being processed and are expected to be turned-over before 

the project ends. An additional 134 municipalities have LiDAR 

coverage of at least 95% (see Figure 16). 

Figure 16. Project Accomplishments and Remaining Target 

Areas 

Comparing outputs on a year-on-year basis, all 14 SUC/HEIs 

increased their outputs in terms of area by at least 49%. 11 

universities produced doubled their outputs on a year-on-year 

basis. University M showed the largest increase with about 

6,000% (refer to Figure 17). 

Figure 17. Year 3 vs Year 2 Output 

5. SUMMARY AND CONCLUSION

Phil-LiDAR 2 Program is a nationwide detailed resource 

program in the Philippines utilizing LiDAR. PARMap, one of 

its five components, aims to provide an updated and detailed 

inventory of the agricultural resources in the country. Leading a 

collaboration of 14 SUC/HEIs, UPD developed algorithms and 

workflows to extract agricultural features from LiDAR data as 

well as post processing scheme to produce agricultural land 

cover maps. Similarly, an end-to-end, centralized and monitored 

scheme for assessing the quality of outputs has been 

implemented. Common errors have been identified and were 

provided with suggested solutions. Exceptional errors, on the 

other hand, have been handled on a case-to-case basis. 

Performance of partner SUC/HEIs were evaluated based on the 

number of submissions as well as area covered. Certain 

SUC/HEIs have been consistent in submitting the most number 

of blocks and covering larger areas. In terms of the percentage 

approval, some SUC/HEIs which have produced lesser outputs 

have higher percentage of approval. This suggests that they are 

proficient in processing albeit at a slower pace. Land cover 

classification, which is deemed as the most critical part of 

processing, also shows which SUC/HEIs have higher level of 

proficiency. At the same time, it showed that some outputs 

requires multiple revisions. Scatterplots of the quantity and 

quality of their outputs have shown clustering among SUC/HEI, 

showing which ones are performing better. On a year-on-year 

basis, eleven (11) SUC/HEIs have made outputs more than 

twice of their previous year’s output. A total of 336 municipal 

maps have been turn-over while 360 maps are expected to be 

distributed by the end of the project. 
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