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ABSTRACT: 

This study compares performance of aerial image based point clouds (IPCs) and light detection and ranging (LiDAR) based point 

clouds in detection of thinnings and clear cuts in forests. IPCs are an appealing method to update forest resource data, because of 

their accuracy in forest height estimation and cost-efficiency of aerial image acquisition. We predicted forest changes over a period 

of three years by creating difference layers that displayed the difference in height or volume between the initial and subsequent 

time points. Both IPCs and LiDAR data were used in this process. The IPCs were constructed with the Semi-Global Matching 

(SGM) algorithm. Difference layers were constructed by calculating differences in fitted height or volume models or in canopy 

height models (CHMs) from both time points. The LiDAR-derived digital terrain model (DTM) was used to scale heights to above 

ground level. The study area was classified in logistic regression into the categories ClearCut, Thinning or NoChange with the 

values from the difference layers. We compared the predicted changes with the true changes verified in the field, and obtained at 

best a classification accuracy for clear cuts 93.1% with IPCs and 91.7% with LiDAR data. However, a classification accuracy for 

thinnings was only 8.0% with IPCs. With LiDAR data 41.4% of thinnings were detected. In conclusion, the LiDAR data proved to 

be more accurate method to predict the minor changes in forests than IPCs, but both methods are useful in detection of major 

changes. 
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1. INTRODUCTION

Airborne light detection and ranging (LiDAR) and aerial 

images are widely used data sources in forest inventories. With 

LiDAR data it is possible to obtain very accurate estimates for 

height-dependent stand variables (Hyyppä et al., 2008; Lim et 

al., 2003; Wulder et al., 2012). In Finland, LiDAR data is 

acquired by Finnish Forest Centre and National Land Survey of 

Finland (NLS) at intervals of ten years (Maltamo et al., 2011). 

However, collecting point clouds with LiDAR technology is 

somewhat expensive whereupon more cost-effective 

alternatives to generate 3D point clouds are appealing. There 

can also be need to update forest data in more often than every 

tenth year when new LiDAR data is collected. Aerial imaging 

is one way to gather aerial remote sensing data with lower 

costs than with LiDAR.  

Recent years methods to generate 3D image point clouds 

(IPCs) from aerial stereo images have been under intensive 

development. Because of better image matching algorithms, 

increasing computing capacity and improving quality of aerial 

images, usability of IPCs in forest inventory has been realized. 

Remote sensing data can be acquired for forestry purposes with 

the fraction of costs if only aerial images are needed instead of 

both airborne LiDAR data and aerial images. IPC data is more 

or less comparable to airborne LiDAR data since both 

characterize forest dimensions in 3D (Leberl et al., 2010). The 

major difference is that LiDAR provides more accurate terrain 

model (DTM)(Ackermann, 1999; Lee and Younan, 2003; Su 

and Bork, 2006). Because IPC is a very appealing data source, 

its use in forestry has recently been increasingly examined 

(Gobakken et al., 2015; Järnstedt et al., 2012; Nurminen et al., 

2013; Rahlf et al., 2014; Stepper et al., 2015).  

Forest change detection yields information of changes in forest 

structure. Changes can result from natural or human induced 

disturbances such as storms, clear cuts or thinnings. Most 

changes cause canopy gaps. Change detection is therefore an 

appealing application for IPCs, because IPCs represent canopy 

structure in a very detailed way, which enables detection of 

small gaps in the canopy. Change detection in forests has 

traditionally based on the visual interpretation of aerial images, 

but because of the laboriousness and subjectivity of this 

method, the use of aerial imagery in automatic forest change 

detection has been widely investigated (Coppin et al., 2004; 

Hussain et al., 2013). However, the use of aerial imagery in the 

detection of thinnings is somewhat problematic, because they 

mainly yield information on changes at the top of the canopy.  

Accurate and up-to-date forest resource data are highly 

important, especially in operational forestry. Aerial image-

based change detection techniques may be used to update 

existing forest resource data between comprehensive LiDAR 

inventories in a cost-efficient manner compared to field 

measurements or LiDAR inventories. The use of IPCs in 

detection of changes could therefore substantially improve the 
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reliability of forest resource data, even if the accuracy is not as 

good as with LiDAR data. In this study, we evaluate the 

accuracy of IPC-based forest change detection in comparison 

with LiDAR based change detection. 

2. MATERIAL 

The study area of 36 km2 was located in Juuka, Eastern 

Finland. We used two sets of aerial stereo images, LiDAR data 

and field data in this study. Twenty overlapping aerial images 

were obtained on 1 May 2009 at the height of 5100 m with the 

Z/I DMC camera. Ground sampling distance was 50 cm, 

sidelap 30% and endlap 60%. 36 overlapping aerial images 

were obtained on 12 June 2013 at the height of 5900 m with 

the Microsoft Ultracam Xp camera. Ground sampling distance 

was 35 cm, sidelap 45% and endlap 80%.  

 

LiDAR data for generation of DTM were obtained on 14 May 

2010 at the height of 2250 m with the Leica ALS60 scanner 

and pulse density of 0.87 points/m2. Another set of LiDAR data 

were obtained on 25 July 2013 at the height of 1900 m with the 

Leica ALS70 scanner and pulse density of 0.75 points/m2 for 

validation purposes.  

 

Field reference data was gathered from 181 sample plots 

between 10 June and 20 November 2013 (Table 1). The 

diameter at breast height (DBH) and tree species were 

recorded for all trees with DBH over 5 cm, and the height of 

one sample tree of each species in each storey class was 

measured on each plot. Heights for trees without height 

measurement were predicted with the H-D curve of Eerikäinen 

(Eerikäinen, 2009). For validation of the used method, another 

set of field data was collected between 29 September and 17 

October 2014 by recording whether thinnings or clear cuts had 

been performed. Only those stands in which clear cuts and 

thinnings were possibly taken place were checked, because we 

had as many as 2558 forest stands. Selection of stands to be 

checked was based on visual interpretation of the 2010 and 

2013 LiDAR CHMs and forest use report. As a result, 73 of 

stands were classified as clear cut, 88 thinned, and 2397 

unchanged. 

 

  Min Mean Max SD 

Lorey’s height, m 3.9 14.3 27.9 6.2 

Basal area, m2/ha 3.9 17.5 42.4 7.7 

Stem volume, m3/ha 13.4 131.9 425.1 86.2 

 

Table 1. Summary of sample plot statistics obtained in field 

inventories in 2013. 

 

3. METHODS 

The detection of thinned and clear-cut areas was performed by 

examining the relative change in stand height and volume 

between the years 2009/2010 and 2013 by using IPC and 

LiDAR data and a LiDAR-derived DTM. We created IPCs 

from overlapping aerial stereo images with the Semi-Global 

Matching (SGM) (Hirschmüller, 2005) algorithm. 

 

Image matching algorithms require that there are two or more 

overlapping images under the area of interest. If the same 

object can be observed at least in two overlapping images on 

the basis of cross-correlation between images and the interior 

and exterior orientation of the images are known, height of the 

object can be determined. 3D point clouds are created by 

repeating this in every pixel or pixel groups in the images. 

SGM combines global and local stereo methods in pixel-wise 

matching. Corresponding points are found by minimizing the 

Mutual Information based matching cost in pixels and 

aggregating it with several 1D path directions on the image. In 

this study, we used ERDAS IMAGINE’s SGM 

implementation, which is available in the AutoDTM module. 

SGM was executed with three spectral bands, red, green, and 

blue.  

 

We constructed a DTM with 2 m  2 m pixel size from LiDAR 

data by using the las2dem tool in LAStools (Isenburg, 2015). 

This DTM was used to scale the elevations of IPCs to above 

ground level in change detection process. 

 

In order to predict changes over a period of three years, we 

created difference layers that displayed the relative difference 

in height or volume between the years 2009/2010 and 2013. 

These difference layers were constructed using two different 

approaches. The first one was based on the use of canopy 

height models (CHM) and the second one on the use of local 

IPC-based Lorey’s height and volume models.  

 

CHMs were created by using the CanopyModel program in the 

FUSION toolset (McGaughey, 2014). The function set the 

pixel values in CHMs to depict the height of the highest point 

within the 17 m  17 m pixel area. The DTMs were used to 

scale pointwise elevations to heights above ground level prior 

to determination of the highest point. If there were no points 

for a pixel, the height value was set to NoData. As the final 

step, a median filter was applied with a 3  3 neighbourhood in 

order to remove NoData pixels from CHMs and to produce a 

slightly smoothed surface.  

 

Lorey’s height and volume models were fitted with a linear 

regression model in the R platform (R Core Team, 2012). The 

field measured plotwise volumes or heights from the year 2013 

were used as dependent variables, and height metrics 

calculated from IPCs and LiDAR data with FUSION’s 

CloudMetrics program were used as predictor variables. 

Stepwise variable selection, which is based on the use of 

Akaike’s information criterion (Akaike, 1973; Burnham and 

Anderson, 2002), was used in the selection of the best 

predictors from the 99 possible IPC variables with the step 

function in R. The best model forms were selected based on 

the root mean square error (RMSE). Lorey’s height and volume 

models were then used to predict heights and volumes for the 

raster of 17 m  17 m that covered the whole study area. 

RMSE is defined as follows: 
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where  yi = height or volume defined by field data 

  = height or volume estimated from the IPCs  

 n = number of sample plots 

 

Difference layers were created by calculating relative heights 

and volumes between years 2009/2010 and 2013 by using 

values obtained with CHMs and height and volume models. 
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This was done by dividing the values in 2013 rasters by the 

corresponding values in 2009/2010 rasters. The values from 

the difference layers were then used in multinomial logistic 

regression models with the multinom function from the nnet 

package (Ripley, 2016) in R in order to classify the pixels in 

study area into the categories ClearCut, Thinning or 

NoChange.  

Predictor variable Abbreviation 

Difference in volumes predicted with 2009 and 2013 SGM (blue band) ve_sgm1 

Difference in volumes predicted with 2009 and 2013 SGM (green band) ve_sgm2 

Difference in volumes predicted with 2009 and 2013 SGM (red band) ve_sgm3 

Difference in CHMs created with 2009 and 2013 SGM1 sgm1 

Difference in CHMs created with 2009 and 2013 SGM2 sgm2 

Difference in CHMs created with 2009 and 2013 SGM1 sgm3 

Difference in CHMs created with 2010 and 2013 LiDAR las 

Difference in volumes predicted with 2009 and 2013 LiDAR ve_las 

Difference in heights predicted with 2009 and 2013 LiDAR he_las 

Table 2. The most important predictor variables and their abbreviations. 

Model no. Predictors 

1 ve_sgm1+ve_sgm2+ve_sgm3 

2 sgm1+sgm2+sgm3 

3 las 

4 ve_las+he_las 

Table 3. The model numbers and predictor variables 

(explained in Table 2) in the selected models. 

Field-measured change information was utilized as dependent 

variable in these models. The best predictors (Table 2, 3) were 

selected with stepwise variable selection.  

The pixelwise results were aggregated to the stand level by 

selecting the most suitable category utilizing proportions of 

different categories in the stand area. First we specified 

threshold values to the categories ClearCut and Thinning that 

maximized classification accuracy. If the category ClearCut 

covered higher proportion of the stand area than the threshold 

value, it was chosen. If not, we chose the category Thinning, if 

its coverage exceeded the threshold. Otherwise, we chose the 

category NoChange. Accuracy assessment was performed with 

the confusion matrix, overall accuracy and Cohen’s kappa 

(Cohen, 1960). 

4. RESULTS

Change detection was performed with CHM-based method or 

height and volume model based method. The results were 

better with the latter. When thinnings and clear cuts were 

compared with the true changes verified in the field (Table 4) 

by using height and volume model based method, we obtained 

a stand level classification accuracy for clear cuts being 79.2% 

with IPCs, but only 8.0% for thinnings. At pixel level results 

were worse. Only 58.1% of clear cuts and 0.9% of thinnings 

were detected. With LiDAR data classification accuracies were 

higher; as much as 91.7% of clear cuts and 41.4% of thinnings 

were detected at stand level and 77.0% of clear cuts and 6.8% 

of thinnings were detected at pixel level.  

With CHM-based method thinnings were not detectable at all 

regardless of the data source. With IPCs, 93.1% of clear cuts 

were detected at stand level and 65.2% at pixel level. With 

LiDAR data, 88.9% of clear cuts were detected at stand level 

and 62.5% at pixel level. Kappa coefficients were rather low in 

every case (Table 5), indicating high influence of random 

chance on the results. 

5. DISCUSSION

Our method proved to be reliable in detection of clear cuts. 

With IPCs, we could detect nearly all clear cuts from aerial 

images, and with LiDAR data detection accuracy was equally 

good. These results were expected, because clear cuts were 

also visually observable in aerial images. However, detection 

accuracy of thinnings was much lower. With IPCs we could 

locate at best 8.0% of stands, in which thinnings were 

performed. With LiDAR data results were better and 41.4% of 

thinnings were detected at best.  

Rather poor detection accuracy may result from the used 

thinning method, low thinning. With this thinning method the 

smallest trees are removed, resulting only small gaps in the top 

of the canopy. IPCs yield information mainly from top of the 

canopy, which may explain, why most of the thinnings 

remained undetectable. With LiDAR data detection of 
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thinnings succeeded rather well, possibly because with LiDAR 

it is possible to obtain more reliable information of lower parts 

of the canopy. 

 

Volume models seemed to be the best way to detect thinnings, 

possibly because low thinnings influence more to the volume of 

growing stock than to forest height. With CHM-based 

difference layers we were not able to detect any of the 

thinnings regardless of the data source.  

 

 

             A             True        B             True 

    NoChange Thinning ClearCut NoChange Thinning ClearCut 

NoChange 99.5 98.4 41.7 99.3 92.0 20.8 

Thinning 0.0 0.9 0.1 0.2 8.0 0.0 

ClearCut 0.5 0.7 58.1 0.5 0.0 79.2 

             C              True        D             True 

    NoChange Thinning ClearCut NoChange Thinning ClearCut 

NoChange 99.4 99.3 34.8 98.9 100.0 6.9 

Thinning 0.0 0.0 0.0 0.0 0.0 0.0 

ClearCut 0.6 0.7 65.2 1.1 0.0 93.1 

             E              True        F             True 

    NoChange Thinning ClearCut NoChange Thinning ClearCut 

NoChange 99.1 92.8 13.5 97.0 58.6 5.6 

Thinning 0.5 6.8 9.5 2.4 41.4 2.8 

ClearCut 0.4 0.3 77.0 0.7 0.0 91.7 

             G              True        H             True 

    NoChange Thinning ClearCut NoChange Thinning ClearCut 

NoChange 98.8 96.0 37.5 99.0 100.0 11.1 

Thinning 0.0 0.0 0.0 0.0 0.0 0.0 

ClearCut 1.2 4.0 62.5 1.0 0.0 88.9 

 

Table 4. Confusion matrix for predictions for the categories ClearCut, thinning, and NoChange. Values are percentages. (A) Pixel -

level predictions made with model 1. (B) Stand-level predictions made with model 1. (C) Pixel-level predictions made with model 

2. (D) Stand-level predictions made with model 2. (E) Pixel-level predictions made with model 3. (F) Stand-level predictions made 

with model 3. (G) Pixel-level predictions made with model 4. (H) Stand-level predictions made with model 4.

 

Model no. Level Kappa OA 

1 Pixel 0.26 0.911 

1 Stand 0.52 0.956 

2 Pixel 0.28 0.912 

2 Stand 0.51 0.953 

3 Pixel 0.38 0.918 

3 Stand 0.59 0.949 

4 Pixel 0.26 0.906 

4 Stand 0.50 0.953 

 

Table 5. The kappa coefficients and overall accuracies (OA) of 

the best models at the pixel and stand level. 

 

6. CONCLUSIONS 

Altogether, we could predict minor changes in forest more 

reliably with LiDAR data than with IPCs, but major changes 

were predicted almost equally reliably. The most of the clear 

cuts were detected both with IPCs and LiDAR data, but 

thinnings were more difficult to locate. With LiDAR data we 

could detect almost half of the thinnings, but with IPCs only 

small part of the thinnings were detected.  

 

Estimation of growing stock volume proved to be the best 

method to detect occurred changes in forests regardless of the 

data source. Although IPCs were not very effective in detection 

of thinnings, we can assume that IPCs are useful in other 

height-related forestry applications in which LiDAR data is 

traditionally used. 
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