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ABSTRACT: 

Tree species classification provides valuable information to forest monitoring and management. The high floristic variation of the 

tree species appears as a challenging issue in the tree species classification because the vegetation characteristics changes 

according to the season. To help to monitor this complex environment, the imaging spectroscopy has been largely applied since the 

development of miniaturized sensors attached to Unmanned Aerial Vehicles (UAV). Considering the seasonal changes in forests 

and the higher spectral and spatial resolution acquired with sensors attached to UAV, we present the use of time series of images 

to classify four tree species. The study area is an Atlantic Forest area located in the western part of São Paulo State. Images were 

acquired in August 2015 and August 2016, generating three data sets of images: only with the image spectra of 2015; only with the 

image spectra of 2016; with the layer stacking of images from 2015 and 2016. Four tree species were classified using Spectral 

angle mapper (SAM), Spectral information divergence (SID) and Random Forest (RF). The results showed that SAM and SID 

caused an overfitting of the data whereas RF showed better results and the use of the layer stacking improved the classification 

achieving a kappa coefficient of 18.26%. 

* Corresponding author

1. INTRODUCTION

Forests cover almost one third of the terrestrial surface and 

play an important role in biodiversity conservation and 

mitigation of world’s climate change (Romijn et al., 2015). 

The identification of species and successional stage of forests 

helps to monitor this type of vegetation and Remote Sensing 

measurements appear as a promising alternative, mainly with 

imaging spectroscopy using hyperspectral sensors (Féret and 

Asner, 2013; Baldeck et al., 2015; Näsi et al., 2016; 

Nevalainen et al., 2017). 

Miniaturized sensors have been developed to be attached to 

Unmanned Aerial Vehicles (UAV) for mapping purposes. 

These systems can acquire images with high spectral and 

spatial resolution, being able to be applied in classification of 

tree species. However, it is known that forests have a high 

floristic diversity with heterogeneous structure, what makes the 

tree species classification difficult (Féret and Asner, 2013). 

Tree species present different behaviour according to the 

season of the year due to the flowering and appearance of fruit. 

These different characteristics of trees appear as a promising 

concept to classify tree species. Key et al. (2001) used 

multispectral aerial photographs to discriminate four tree 

species in West Virginia, USA. Somers and Asner (2014) 

showed the use of four different epochs of Hyperion images to 

classify tree species in Hawaiian forests using a spectral 

unmixing strategy and a feature selection process. 

Two challenges when working with tropical forests, especially 

Atlantic Forests, are the forest structure and the spectral 

variability among tree species, which influence the tree species 

classification (Ferreira et al., 2016). In this sense, this work 

has the objective of evaluating the improvement of tree species 

classification using hyperspectral images acquired over 

Atlantic Forest in two different years. 

1.1 Study area 

The study area is a fragment of Atlantic Forest located in the 

northwest part of the ecological reserve named Ponte Branca 

(Figure 1), part of the Black Lion Tamarin Ecological Station 

(ESEC-MLP). The Ponte Branca fragment is a semi deciduous 

forest located in the western part of São Paulo State 

(22°24’51”S and 52°30’50”W). It comprises different 

successional stages, including young and mature forests 

(Berveglieri et al., 2016). 

Figure 1. Study area located in the northwest part of São Paulo 

State, Brazil, belonging to the Ponte Branca forest fragment. 
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Starting from the access road nearby, the study area is a 

transect with approximately 400 m length and 50 m width. It 

comprises more than 1,000 trees, with diameter at breast 

height (DBH) higher than 3.8 cm, divided into 27 different 

species (Berveglieri et al., 2016). 

2. METHODOLOGY

To discriminate the tree species, several steps were performed 

as follows: i) Image acquisition; ii) Dark current correction and 

radiometric calibration; iii) Geometric processing with bundle 

block adjustment; iv) Radiometric block adjustment; v) Tree 

delimitation and species recognition; vi) Image classification; 

vii) Results analysis.

2.1 Image acquisition 

The Rikola Hyperspectral Camera, a hyperspectral imagery 

sensor developed by Senop Ltd. (http://senop.fi/) was used for 

image acquisition. This camera has two complementary metal 

oxide semiconductor (CMOS) frame sensors based on the 

Fabry-Pérot Interferometer (FPI) (Oliveira et al., 2016). It is 

able to acquire images from the visible to the near-infrared 

(VIS-NIR) and up to two spectral bands simultaneously. In 

addition, the camera can be connected to a global positioning 

system (GPS) and to an irradiance sensor, which does not 

record data in W/sr², but relative values.  

A characteristic that makes this camera interesting in research 

applications is its capacity of selecting and acquiring different 

spectral bands in a range between 500 nm to 900 nm. 

Regarding the spectral bands acquisition, the FPI makes it 

possible because each airgap of the interferometer corresponds 

to one wavelength with specific full width of half maximum 

(FWHM). The spectral bands are acquired sequentially causing 

a slightly different spatial position among the spectral bands, 

which can be corrected applying geometric transformations 

(Honkavaara et al., 2013). 

Two models of this camera were used in this study: the first 

one was the 2014 model and the second one was the 2015 

model. Table 1 shows the spectral settings of the cameras. 

Central wavelengths of the 2014 camera (nm): 506.07, 520.00, 

535.45, 550.16, 564.71, 580.08, 592.78, 609.79, 619.55, 629.23, 

650.28, 660.27, 669.96, 680.06, 689.56, 699.62, 709.71, 719.99, 

729.56, 740.45, 749.65, 770.46, 780.16, 790.21, 819.74 

FWHM of the 2014 camera (nm):  15.65, 17.51, 16.41, 15.18, 

16.60, 15.14, 14.81, 13.77, 14.59, 12.84, 15.85, 24.11, 21.70, 21.00, 

21.67, 21.89, 20.78, 20.76, 21.44, 20.64, 19.43, 19.39, 18.25, 18.50, 

18.17 

Central wavelengths of the 2015 camera (nm): 506.22, 519.94, 

535.09, 550.39, 565.10, 580.16, 591.90, 609.00, 620.22, 628.73, 

650.96, 659.72, 669.75, 679.84, 690.28, 700.28, 710.06, 720.17, 

729.57, 740.42, 750.16, 769.89, 780.49, 790.30, 819.66 

FWHM of the 2015 camera (nm): 12.44, 17.38, 16.84, 16.53, 

17.26, 15.95, 16.61, 15.08, 16.26, 15.30, 14.44, 16.83, 19.80, 20.45, 

18.87, 18.94, 19.70, 19.31, 19.01, 17.98, 17.97, 18.72, 17.36, 17.39, 

17.84 

Table 1. Spectral settings of the FPI cameras 

The camera and its accessories were installed in an UAV 

octocopter, model SX8, developed by Sensormap company 

(http://www.sensormap.com.br/). This UAV is controlled by 

the DJI Wookong-M autopilot and is able to fly up to 30 

minutes, depending on payload weight and weather conditions. 

A Sony NEX A6000 RGB camera, a global navigation satellite 

system (GNSS) receiver, an inertial navigation system (INS) 

Novatel SPAN-IGM S1 and a Raspberry Pi B+, which was 

used to record the raw INS data, compose the UAV payload 

together with the FPI camera. Figure 2 shows the SX8 and its 

payload. 

 Figure 2. SX8 UAV and its payload 

Two image data sets were used in this work. The first one was 

acquired in August 2015 and the second one in August 2016 

using the 2014 camera and 2015 camera, respectively. The 

flight height for both image acquisitions was 160 m above the 

ground, providing images with Ground Sample Distance 

(GSD) of approximately 10 cm. Considering the tree tops, with 

trees average height about 10 m, the flight height was 150 m, 

providing images with 9.5 cm of GSD on the top of the canopy. 

The weather was dry and sunny, without clouds, during both 

flights and without rain for at least two weeks before the 

flights. In the 2015 flight, the average Sun zenith and 

azimuthal angle were 45°45’18” and 322°51’54”, respectively. 

For the 2016 flight, due to different acquisition times, the 

average Sun zenith and azimuthal angle were 61°40’48” and 

300°26’24”, respectively. 

2.2 Image processing 

After the image acquisition, it was performed the dark current 

correction using a dark image acquired before the flight, and 

the radiometric calibration using a calibration file provided by 

the manufacturer. The Hyperspectral Imager, software provided 

by Senop Ltd, was used for both procedures. 

To reconstruct the camera geometry, the Interior Orientation 

Parameters (IOP) were estimated using the on-job calibration, 

performed with AgiSoft PhotoScan. This software was also 

used to refine the Exterior Orientation Parameters (EOP) of 

three reference bands, for image orientation. The reference 

bands were those centred in 564.71 nm, 680.06 nm and 770.46 

nm for the 2014 camera and 565.10 nm, 679.84 nm and 769.89 

nm for the 2015 camera. The initial EOP values were 

determined by the GNSS/INS integrated system and post-

processed with the Waypoint Inertial Explorer software 

(http://www.novatel. com/products/software/inertial-explorer/). 

After the imaging processing, the dense matching method was 

used to generate the digital surface model (DSM) of the area 

with 10 cm GSD, with AgiSoft PhotoScan. To correct the 

Bidirectional Reflectance Distribution Function (BRDF) and 

illumination variation caused by differences in the geometry of 

illumination and viewing during the imaging acquisition, it 

was applied the method proposed and presented by 

Honkavaara et al. (2013), Hakala et al. (2013) and Näsi et al. 

(2016). In this process, it is important to highlight that the 
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irradiance data from the camera sensor were not used because 

it gives only relative values of irradiance. 

Finally, to acquire physical values in the images, the empirical 

line method (Smith and Milton, 1999) was applied. Targets 

measuring 1.40 m by 1.40 m in black, grey and white were 

placed in the study area to be used as radiometric reference. 

The mean hemispherical directional reflectance factors 

(HDRF) of the targets were 72%, 17% and 2% for the white, 

grey and black targets, respectively. Figure 3 shows the targets 

in a RGB image composition of the FPI camera (R = 650.96 

nm; B = 550.39 nm; B = 506.22 nm). 

Figure 3. Radiometric reference targets for the empirical line 

2.3 Image classification 

After the image processing, polygons of tree crowns were 

manually delimited to be recognized in field. A native 

inhabitant of the area identified the polygons, divided into ten 

different species. However, as the objective of this work is to 

verify the contribution of temporal image series for 

classification of tree species, only four species were used in the 

analysis, because more than one sample tree is available for 

these species. The species were Copaifera langsdorffii (Cl), 

Apuleia leiocarpa (Al), Hymenaea courbaril (Hc) and Helietta 

apiculate (Ha). Table 2 shows how many trees were identified 

for each species and the average number of pixels of each 

crown.  

Part of the crowns identified in field was selected to compose 

the training set. The sample selection criteria was to use parts 

of the trees crowns, which presented colour variation due to 

shadows or due to leaves moisture. Table 2 shows the number 

of pixels and polygons identified and used as the training sets. 

The average spectral response was calculated with the pixels of 

each polygon, which make up the sample. These average 

values were used as reference spectra for classification. In 

addition, it was used polygons which were not used in the 

training set for the results evaluation. These polygons were 

considered as reference targets and were used to calculate the 

confusion matrix of each classification. 

Specie 

Average n° 

of pixels of 

each crown 

N° of trees 

identified/used for 

the training set 

N° of pixels for 

the training set 

Cl 3,309 13/7 6,095 

Ha 6,134 2/1 2,642 

Al 3,517 6/2 3,066 

Hc 6,047 7/3 5,323 

Table 2. Average number of pixels per tree species, number of 

trees recognized in field and used for the training set and, 

number of pixels used as training set 

Three data sets, named DS1, DS2 and DS3, were classified 

with three classifiers each. The first data set (DS1) consisted of 

the mosaic from images acquired in August 2015 and all their 

25 spectral bands were used for each classification technique. 

The mosaic obtained from the images of August 2016 compose 

the second data set (DS2), being used all of their 25 spectral 

bands for image classification. The last data set (DS3) is a 

layer stack performed with the mosaics from August 2015 and 

August 2016, generating 50 spectral bands, used in each 

classifier. This data set allows the comparison of the 

classification performance using temporal information against 

single date. Table 3 shows the information used for each data 

set. 

Data set Images from Spectral bands 

DS1 August 2015 25 

DS2 August 2016 25 

DS3 August 2015 and August 2016 50 

Table 3. Variables used in each data set 

The classifiers methods applied were the Spectral Angle 

Mapper (SAM), the Spectral Information Divergence (SID) and 

the Random Forest (RF). The first two were applied with 

ENVI version 5.1 (Exelis Visual Information Solutions, 

Boulder, Colorado) and the RF were applied using the 

ImageRF (Waske et al., 2012). All the classification results 

were evaluated using the reference polygons not used as 

training set, in the EnMAP-Box (van der Linden et al., 2015) 

SAM is an algorithm that determines the spectral similarity, 

among the reference spectra and the spectra of each pixel, by 

calculating their angular difference in radians (Yuhas et al., 

1992). The maximum angle of separation among spectra was 

empirically chosen as 0.1 radians, due to the similarity of 

spectral responses of species. 

SID was the second classifier method applied, and it measures 

the discrepancy probabilities among the reference spectra and 

each pixel (Chang, 1999). The selected threshold for maximum 

divergence spectra was 0.01, to minimize false positives during 

the classification, since there are more than 20 species in the 

study area.  

The last classifier applied was the RF, a non-parametric 

algorithm that uses multiples trees of random subsets of the 

training data to classify the image (Breiman, 2001). One 

hundred trees were created using the reference spectra and the 

Gini Coefficient were chosen as impurity function. 

After the classifications, confusion matrixes were calculated to 

evaluate the results, accuracy of all classes, and the 

improvement of classification in each group. The kappa 

coefficients (Cohen, 1960; Viera and Garrett, 2005) were also 

calculated to verify the degree of agreement between the real 

classes and the mapped one of each classification. 
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3. RESULTS AND ANALYSIS

Table 4 shows the confusion matrixes for SAM results. For this 

classifier, the kappa coefficient varied from 1.78% to 14.52% 

where the highest value was achieved for the DS2 data set. The 

DS1 obtained a kappa coefficient of 1.78% and the DS3 

obtained a kappa coefficient of 7.95%. According to Viera and 

Garrett (2005), this value of kappa index shows a slight 

agreement for the classification. These results show that using 

images from different years did not improve the classification 

using SAM. Confusion among classes occurred in all data sets, 

especially with Al and the other classes such as Cl and Hc. 

These results were expected because the images were acquired 

in the same month, August, with similar pre-flight weather 

conditions, causing data overfitting. 

DS1 

Reference Class (%) 

Ha Al Cl Hc 

Ha 5.87 0.15 4.71 2.92 13.66 

Al 0.84 4.06 4.86 4.80 14.56 

Cl 5.97 5.44 14.29 10.68 36.38 

Hc 4.44 5.70 19.31 5.95 35.40 

Sum (%) 17.12 15.35 43.17 24.36 100.00 

DS2 

Reference Class (%) 

Ha Al Cl Hc 

Ha 3.23 1.99 3.20 6.11 14.53 

Al 2.48 4.67 6.04 10.17 23.35 

Cl 4.79 4.92 17.45 7.19 34.34 

Hc 2.05 4.87 8.04 12.83 27.78 

Sum (%) 12.54 16.44 34.73 36.29 100.00 

DS3 

Reference Class (%) 

Ha Al Cl Hc 

Ha 5.70 2.96 4.84 12.19 25.69 

Al 1.15 3.95 2.68 8.86 16.64 

Cl 4.41 1.83 9.59 7.22 23.04 

Hc 2.74 7.45 10.65 13.79 34.63 

Sum (%) 14.00 16.18 27.76 42.06 100.00 

Table 4. Confusion matrix for the data sets classified with 

SAM 

Similar results can be observed in the SID results. The 

confusion matrixes (Table 5) for all data sets classified with 

SID showed classes confusions especially for the Al specie 

with the Hc specie. The highest value of kappa coefficient 

occurred for the DS1, 10.59%. The kappa coefficient for DS2 

was 3.79% and the coefficient for the DS3 was 6.89%. This 

kappa values can be considered in a slight agreement with the 

ground truth, following Viera and Garret (2005). In addition, 

the time series of images did not improve the classification, 

due to the overfitting of the data, because both images were 

acquired in August. 

DS1 

Reference Class (%) 

Ha Al Cl Hc 

Ha 5.85 1.47 4.66 5.41 17.40 

Al 0.09 4.30 4.65 7.99 17.03 

Cl 3.40 2.67 10.19 10.27 26.53 

Hc 4.71 5.41 12.81 16.10 39.04 

Sum (%) 14.05 13.86 32.31 39.77 100.00 

DS2 

Reference Class (%) 

Ha Al Cl Hc 

M
a

p
 

c
la

ss
 

(%
) 

Ha 1.45 2.00 3.06 6.71 13.22 

Al 1.17 3.32 5.76 10.87 21.12 

Cl 2.48 3.62 13.57 8.24 27.92 

Hc 6.98 7.60 9.96 13.21 37.74 

Sum (%) 12.08 16.54 32.35 39.03 100.00 

DS3 

Reference Class (%) 

Ha Al Cl Hc 

Ha 8.51 2.28 5.09 13.41 29.28 

Al 0.46 3.10 3.77 10.36 17.69 

Cl 3.51 2.98 7.69 9.30 23.48 

Hc 2.76 7.94 6.90 11.94 29.54 

Sum (%) 15.23 16.31 23.46 45.00 100.00 

Table 5. Confusion matrix for the data sets classified with SID 

The RF presented highest values of kappa coefficient when 

compared to SID and SAM. The higher coefficient value was 

founded for the DS3 dataset. The values for DS1, DS2 and 

DS3 with RF were, respectively, 16.33%, 17.29% and 18.26%. 

These values still present a slight degree of agreement (Viera 

and Garret 2005), but, even though, showed better results. 

Analysing the results it is possible to observe that the temporal 

information, layer stacking of images from 2015 and 2016, 

helped to improve the classification. Even being acquired in 

the same month, August, classification with these presented a 

higher value of kappa coefficient in the DS3. This result can be 

explained because the RF is insensitive to overfitting (Belgiu 

and Dragut, 2016) and the classification was improved. In 

order to have a better understanding of the results, the 

confusion matrixes calculated for each data set classified with 

RF is presented in Table 6. 

DS1 

Reference Class (%) 

Ha Al Cl Hc 

Ha 6.11 0.82 4.26 6.69 17.89 

Al 0.10 4.06 2.73 3.81 10.70 

Cl 4.08 6.49 19.79 16.28 46.64 

Hc 1.35 6.14 6.79 10.49 24.77 

Sum (%) 11.64 17.52 33.57 37.27 100.00 

DS2 

Reference Class (%) 

Ha Al Cl Hc 

Ha 3.81 2.06 3.64 4.80 14.30 

Al 1.87 3.13 4.03 4.44 13.47 

Cl 2.51 4.36 14.62 7.60 29.10 

Hc 3.44 7.97 11.28 20.43 43.13 

Sum (%) 11.64 17.52 33.57 37.27 100.00 

DS3 

Reference Class (%) 

Ha Al Cl Hc 

Ha 6.17 1.98 5.34 7.29 20.78 

Al 0.95 4.94 4.30 4.93 15.12 

Cl 2.65 3.64 15.84 11.07 33.20 

Hc 1.87 6.96 8.09 13.98 30.90 

Sum (%) 11.64 17.52 33.57 37.27 100.00 

Table 6. Confusion matrix for the data sets classified with RF 

In general, it was noticed confusion in most part of the species. 

Considering the performance of different classifiers, it was 

noticed that the best classifier for this type of target was the 

RF, which achieves higher kappa values for all data sets. The  

reason is that RF uses decision trees of random vectors and it 

might help the classification, which does not occur when using 

SAM and SID, which uses all the spectral bands to calculate 

the divergence between spectra. 
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In addition, even with low kappa coefficient values, it can be 

remembered that only four species were used in the 

classification. The use of a higher number of species might 

help the classification accuracy. Another issue is the number of 

individuals for each species used in the training set. Cl was the 

specie most identified in field work, being the specie with 

higher number of training samples and validation. The more 

the number of samples are, more accurate is the classification 

result. 

Finally, it was observed that the use of pixel-based 

classification can affect the classification accuracy. Trees are 

composed of leaves and branches. In forests, the understory can 

affect the classification. The use of region-based classification 

should improve the species classification as well the use of 

spatial information. 

4. CONCLUSION

In this study, we presented the use of time series of images to 

verify the improvement of tree species classification. The tree 

species belong to the fragment of Atlantic Forest named Ponte 

Branca. Hyperspectral images were acquired by using an UAV 

in 2015 and 2016. The classifiers applied showed the data 

overfitting, except for RF technique, which achieved an 

improved classification result. However, it is expected that the 

use of images acquired in different seasons of the year, such as 

March or April and November or December could improve the 

image classification. Images acquired in these seasons can 

show a higher variance in the spectral responses of trees 

because of the characteristics of the semi deciduous trees and 

because of the differences in flowering and appearance of 

fruits.  
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