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ABSTRACT:

Missing value imputation is a common approach for preprocessing incomplete data sets. In case of data clustering, imputation methods
may cause unexpected bias because they may change the underlying structure of the data. In order to avoid prior imputation of missing
values the computational operations must be projected on the available data values. In this paper, we apply a robust nan-K-spatmed
algorithm to the clustering problem on hyperspectral image data. Robust statistics, such as multivariate medians, are more insensitive
to outliers than classical statistics relying on the Gaussian assumptions. They are, however, computationally more intractable due to
the lack of closed-form solutions. We will compare robust clustering methods on the bands incomplete data cubes to standard K-means
with full data cubes.

1. INTRODUCTION

Missing value imputation is a common approach for preprocess-
ing incomplete data sets. In case of data clustering, imputation
methods may cause unexpected bias because they modify the un-
derlying structure of data. In order to avoid prior imputation of
missing values computational operations must be projected on the
available data values.

Hyperspectral imagers use different approaches for separating
different wavebands from each other. Pushbroom cameras use
variations of prism structures that divide the incoming radiation
to the sensor cell. In filtering spectral imagers the data cube is
formed by tuning or changing filters in front of the sensor cell
and needed optics. There is variation in the kinds of filters and
sensors used.
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Figure 1. Working principle of Fabry-Perot interferometer.
While changing the cap between mirrors, transmitted waveband
and its orders passes system to the RGB cell. By selecting caps

carefully it, is possible to capture three wavebands with one
shot. Full resolution data cube actually contains missing data

wavebands in different pixels due the Bayern matrix.

One possible filtering structure is a Fabry-Perot Interferometer
with a colour CMOS cell (Saari et al., 2013). To gain full resolu-
tion images from the sensor, one must demosaic the Bayer pattern
image using some interpolation method. This is due to the fact
that the Bayer filter matrix acts to block certain wavebands from
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Figure 2. Readout circuit of the full-frame CCD array. Readout
is connected to the frame rate. We can double the maximum

frame rate, if we read only every second column from the censor
cell.

each pixel, with the precise configuration determined by the pat-
tern of the matrix. Spectral imagers of this and derivative kinds
have been developed by VTT, IMEC and Cubert among the oth-
ers. On the other hand, some novel approaches for pushbroom
cameras increase their frame rate by reading only every second
or third band from the sensor cell. If the camera were to image
every third band in an interleaved fashion, i.e. changing the set of
imaged bands in each line, we would gain spectral images with
different missing bands in each line.

We can treat both of these problems as problems of missing data.
In this paper, we apply a robust nan-K-spatmed algorithm to the
clustering problem on hyperspectral image data. Robust statistics
are more insensitive to outliers than classical statistics relying on
the Gaussian assumptions. They are, however, computationally
more intractable due to the lack of closed-form solutions. We
will compare robust clustering methods on the data cubes with
missing bands to standard K-means with full data cubes.
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Figure 3. A part of X-rite ColorChecker board composed from
wavebands: 489, 534, and 618 nm

2. METHODOLOGY

2.1 Data cubes

Data sets are imaged with a framing spectral imager developed
by VTT. In the VTT’s camera the spectral separation is based
on piezo-actualized Fabry-Perot interferometer (FPI). We used
wavebands from 480 to 790 nm. Waveband calibration for FPI
camera was done immediately after imaging (Saari et al., 2013).
Reflectance images are calculated by dividing the radiance im-
ages with a white reference image. Below this data set will be
referred to as interpolated data set.

An image was taken of a part of an X-rite ColorChecker board,
which is shown in Figure 3.

After calibration the Bayer pattern is reconstructed from the data
cube, so that values which result from the interpolation are re-
placed by NaN values. Below this data set is referred to as
missing data set. To simulate pushbroom functionalities we used
the same test set so that different wavebands were changed to
NaN values on different lines of the image. We composed three
data sets using this method. Every second, fourth and tenth lines
and bands were used in the data sets. Thus the data sets con-
tained 1/2, 3/4 and 9/10 of missing values of the whole data set.
Below these data sets are referred to E2, E4 and E10 data set .
All the computation and data transformation were carried out on
Matlab 2016b using custom-made functions as well as standard
toolboxes.

As Figure 4 points out, dark margins of each color area cre-
ate noise to the data. Thus, we also drew a sub-sample of size
100× 100 pixels from each color area, which makes comparison
between the results easier.

2.2 Robust clustering using spatial median

Real data are often incomplete, noisy and may contain even large
outliers. There are several strategies to deal with incomplete
data and outliers. In the presence of missing data one can ei-
ther discard the incomplete data points, impute the missing val-
ues, or utilize all the available data values (Little and Rubin,
2014). Data contamination can be managed by data filtering,
data cleaning, outlier detection, or using robust methods that are
less sensitive to outlying values than classical methods. In this
study we compare the performance of the K-spatialmedians clus-
tering algorithm with missing data treatment on incomplete hy-
perspectral data to the well-known K-means method (MacQueen,
1967, Äyrämö, 2006). K-means is a classical partitional cluster-
ing method in which the clusters are represented by the sample
means (MacQueen, 1967). Advantages of the K-means method
are its algorithmic simplicity, computational efficiency, and in-
terpretability of the results. K-spatialmedians is a variant of K-
means in which each cluster prototype is represented by a ro-
bust multivariate estimate of location called the spatial median

Figure 4. Visualisation of captured data set. The upper plot
represents whole data, lower is sample taken from each color

target. We can see that there is noise on data and border area of
color checker card creates some disruption between clusters.

(Äyrämö, 2006, Kent et al., 2015). The benefit of substituting the
spatial median for the sample mean is greater robustness against
outlying points, whereas the cost is the increase in computational
complexity (Kent et al., 2015). In the following we describe the
nan-K-spatmed algorithm that is a generalized version of the K-
spatialmedians method (Äyrämö, 2006).

Let us consider a set of p−dimensional data points X = {x1, . . . ,
xn}. In this study data point refers to the single spectra mea-
sured from the hyperspectral image. The goal of cluster analy-
sis is to partition the set of data points X into set of K clusters
C = {ck, k = 1, . . . ,K}.

A general class of metric distance functions in the p-dimensional
vector space is defined as:

lq(x,y) =

(
p∑

i=1

|(x)i − (y)i|q
)1/q

= ‖x− y‖q, q <∞,

(1)
where x,y ∈ Rp. The most common choices of q are 1, 2, and
∞, that gives us l1-norm, l2-/Euclidean-norm, and max norm,
respectively.

The objective of the K-means method is to minimize the sum
of the squared error over all K clusters. The squared error is
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obtained from eq:lqnorm by choosing q = 2:

J (u) =
n∑

i=1

‖u− xi‖2. (2)

The objective function of K-means is the squared Euclidean error
over the K clusters (MacQueen, 1967):

J =

n∑
i=1

K∑
k=1

rik‖xi −mk‖2 (3)

where mk is the sample mean of the kth cluster and rik is deter-
mined by:

rik =

{
1, if k = argmin

k
‖xi −mk‖2

0, otherwise
(4)

The batch-type of algorithm for minimizing the K-means objec-
tive function iterates between the following steps until the parti-
tion does not change:

1. Assign each data points to its closest cluster center ck

2. Update the cluster centers C = {ck, k = 1, . . . ,K} by
computing the sample mean of the assigned points

The initial cluster centers can be chosen randomly or by using
some initilization strategy (Pena et al., 1999, Arthur and Vassil-
vitskii, 2007, Äyrämö et al., 2007).

Sensitivity of K-means toward outlying points is caused by the
zero breakpoint point of the sample mean estimate that is used as
the representative point for the cluster centers. A more robust er-
ror function for the problem of clustering partitioning is obtained
by choosing q = 1 in (1). The point that minimizes the sum of
Euclidean distances to n data points is known as the spatial me-
dian (Huber, 1981). The problem of the spatial median is defined
as:

min
u∈Rp

J (u), for J (u) =
n∑

i=1

‖u− xi‖. (5)

In statistics the spatial median is known as a robust multivariate
estimate of location. Its breakdown point is 0.5, that is, more than
50 % of the data points must be contaminated to cause infinite in-
fluence on the estimate (Lopuhaä and Rousseeuw, 1991). If the
data points are not collinear the spatial median is unique (Mila-
sevic and Ducharme, 1987). If all points are concentrated on a
line the spatial median reduces to the univariate median, which
is generally not unique. The spatial median is also location and
orthogonal equivariant, but not affine equivariant estimator of lo-
cation.

Due to the lack of a closed-form solution to the problem (5) gen-
eral optimization methods or problem-specific iterative solutions
are needed (Kent et al., 2015). In this study we utilize an iter-
ative over-relaxation variant of the Weiszfeld algorithm (SOR-
Weiszfeld) that is extended by available case strategy for finding
the minimum of (5) in the presence of missing values (Äyrämö,
2006).

In order to utilize all the available data values we need to first
define a diagonal matrix Pi for each data point xi. In order to

project operations on the available values we define (Pi)j=k = 0
if jth element of data vector xi is missing and otherwise (Pi)j=k =
1.

The iterative SOR-Weiszfeld method is based on a smooth ”ε-
perturbed” formulation in which first-order necessary conditions
for the stationary point are given by (Äyrämö, 2006)

n∑
i=1

(
Pi(u− xi)√

‖Pi(u− xi)‖2 + ε
= 0 (6)

.

v can be then solved by a ”linearized” equation

n∑
i=1

αt
iPi(v − xi) = 0, (7)

where αt
i defines the explicit weights for the denominator of (6):

αt
i =

1√
‖Pi(ut − xi)‖2 + ε

.

The solution at tth iteration is obtained by the over-relaxation
step:

ut+1 = ut + ω(v − ut), ω ∈ [0, 2], (8)

where ω is the over-relaxation parameter, (v − ut) is the search
direction, and v is obtained from (7). The steps are iterated until
the stopping criterion is satisfied.

2.3 The K-spatialmedians for incomplete data

The objective function of the basic K-spatialmedians clustering
problem is obtained from (3) by simply replacing the sample
mean with the solution of (5)(Äyrämö, 2006). Imputation or dis-
carding of incomplete data points is avoided in nan-K-spatmed
by projecting the Euclidean norm to the existing values. The ob-
jective function of nan-K-spatmed is then defined as:

J =

n∑
i=1

K∑
k=1

rik‖Pi(xi −mk)‖ (9)

where mk is the spatial median point of the kth cluster and rik
is determined by:

rik =

{
1, if k = argmin

k
‖Pi(xi −mk)‖

0, otherwise
(10)

The algorithm used to minimize the nan-K-spatmed objective func-
tion follows the same basic steps as the K-means method. The
sample mean, that is computed using the available case strategy,
was input as the initial guess to the SOR-Weiszfeld algorithm
(8). The K-means type of algorithms end up occasionally with
one or more empty clusters. In our implementation of nan-K-
spatmed, an empty cluster is always discarded and K-1 clusters
are returned. In order to find the best possible partition from the
target data set the nan-K-spatmed algorithm was initialized using
the furthest first principle in which the mutually K most distant
data points are being selected as the initial cluster centers. Since
incomplete data points do not necessarily lie in the same space
(indices of missing elements may not match in pairs of data vec-
tors), an artificial set of complete data points is created by com-
puting the spatial medians points of 10000 random samples (each
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of size 10000). In order to minimize computational effort of es-
timating large numbers of spatial medians the maximum number
of over-relaxation iterations (8) was set to five. The furthest first
algorithm was then applied to this approximated set of complete
spatial median points yielding a set of initial points for the nan-
K-spatmed algorithm on the full data.

The following parameters were chosen for the nan-K-spatmed al-
gorithm:

• Number of clusters K = 12/13/14 (depending on data
sets)

• Maximum number of clustering iterations = 100

• SOR-stepsize = 1.5

• Stopping tolerance SOR 1e− 5

• Maximum number of SOR iterations = 100

3. RESULTS AND VALIDATION

We studied the performance of the nan-K-spatmed algorithm on
hyperspectral data with missing wavebands. Figure 5 summarizes
classification results between different subsets of data taken from
each of the 12 color targets. The first row corresponds to the
ground truth of each target color. On the second and third row we
can see that K-means and nan-K-spatmed with missing data set
perform equally. Approximately 1/3 of data points are missing
from the incomplete data sets. Both K-means on the interpolated
data and nan-K-spatmed on the incomplete data find 11 clusters
correctly, but both methods divide one cluster into two parts. K-
means makes mistake with the cluster 12 that contains a lot of
noise due its location on the corner of original image (see fgure
3), whereas nan-K-spatmed make worst mistake with the cluster
number 8 which is contains darkest color.

Ground truth

Kmeans interp. data

nanKSpatMed missing data

nanKSpatMed interp. data

E2

E4

E10

12 11 10 9 8 7 6 5 4 3 2 1

Figure 5. Clustering results for different data sets and methods
using 12 subsets from each colors.

Surprisingly, nan-K-spatmed performed even worse on the whole
interpolated data set and divided also color 11 into two different
clusters. With data sets E2, E4 and E10 nan-K-spatmed seems to
fail in general and only partly succeed. It is capable of finding
clusters, but not all. Closer examination showed that the method
is incapable of connecting consecutive lines to the same cluster.
This observation suggests that the nan-K-spatmed algorithm is
not able to handle data sets with more than 50% of values miss-
ing. Figure 9 shows the clustering results for the whole sets E2,
E4 and E10 whenK = 13. In case of E2 data set nan-K-spatmed
is capable of detecting continuous clusters, which is somehow in
conflict with the results obtained on the subsets. This could be

related to the presence of noise and the dark borders surrounding
the color areas.

Figures 6, 7 and 8 show the clustering results for the whole image
using K values 13 and 14. Here, in general, it seems that nan-K-
spatmed outperforms K-means. In the closer examination we can
see that the borders of the color areas are difficult to cluster for
both methods.

4. CONCLUSION

We have shown that if spectral data include missing wavebands or
values K-spatialmedians method with available case strategy can
be applied in clustering. The results are meaningful at least when
there is not too many missing values in the data set. We tested
also novel initialization for finding the initial cluster centers to
start the iterative clustering algorithm. Our approach showed rea-
sonable performance and it was comparable with K-means on the
data sets without missing values.

nan-K-spatmed is an appropriate method for clustering in such
cases where the sensor itself produces missing values to the data
set, but it can also be applied to data sets which for some reason
have some missing values on wavebands. For example, specular
reflection can cause disturbances on some wavebands only. We
can easily replace these values by empty values (NaN ) and use
nan-K-spatmed for the clustering data set.

The present study points out that initialization and noise level
of data affect the clustering results. When noise-to-signal-ratio
(SNR) is high K-means and nan-K-spatmed approaches perform
equally, but in the presence of low SNR nan-K-spatmed seems to
outperform K-means. If data is biased or includes outliers all the
clusters may not found, at least, without proper initialization due
to the lack general of robustness of the K-means type of partition-
ing methods (Garcia-Escudero and Gordaliza, 1999).
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Figure 6. Kmeans clustering result when K is 13 and 14. Border
areas of color targets are hard. Three colors are clustered as

same.
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Figure 7. K-spatialmedian clustering results when K is 13 and
14 for incomplete FPI data
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Figure 8. K-spatialmedian clustering results when K is 13 and
14 for the original interpolated data.
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Figure 9. K-spatialmedian clustering results when K = 13 for
simulated pushbroom data, where every second band is read
from second line (E2 data set), every fourth band from fourth

line (E4 data set) and every tenth band from tenth line (E10 data
set).
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