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ABSTRACT: 

Multispectral and hyperspectral imaging is usually acquired by satellite and aircraft platforms. Recently, miniaturized hyperspectral 

2D frame cameras have showed great potential to precise agriculture estimations and they are feasible to combine with lightweight 

platforms, such as drones. Drone platform is a flexible tool for remote sensing applications with environment and agriculture. The 

assessment and comparison of different platforms such as satellite, aircraft and drones with different sensors, such as hyperspectral 

and RGB cameras is an important task in order to understand the potential of the data provided by these equipment and to select the 

most appropriate according to the user applications and requirements. In this context, open and permanent test fields are very 

significant and helpful experimental environment, since they provide a comparative data for different platforms, sensors and users, 

allowing multi-temporal analyses as well. Objective of this work was to investigate the feasibility of an open permanent test field in 

context of precision agriculture. Satellite (Sentinel-2), aircraft and drones with hyperspectral and RGB cameras were assessed in this 

study to estimate biomass, using linear regression models and in-situ samples. Spectral data and 3D information were used and 

compared in different combinations to investigate the quality of the models. The biomass estimation accuracies using linear 

regression models were better than 90% for the drone based datasets. The results showed that the use of spectral and 3D features 

together improved the estimation model. However, estimation of nitrogen content was less accurate with the evaluated remote 

sensing sensors. The open and permanent test field showed to be suitable to provide an accurate and reliable reference data for the 

commercial users and farmers. 

* Corresponding author

1. INTRODUCTION

Drone (alternative terms: UAV; Unmanned Aerial Vehicle or 

RPAS; Remotely Piloted Aircraft System) remote sensing 

technology is developing explosively and drones are 

increasingly used in various environmental remote sensing tasks 

(Pajares, 2015; Torresan et al, 2017). New drone technologies, 

including sensors, sensor systems and platforms are entering to 

commercial markets constantly. When concerning the usability 

of drone systems and different remote sensing systems, 

characterization of their performance in controlled test field 

would be highly advantageous. In applications, such as 

precision agriculture to estimate biomass, the uncertainty 

characterization is required in order to rely in the results of 

drone remote sensing. Thus, an accurate reference field to 

evaluate the data obtained using this technology is of great 

value.  

In the case of classical mapping applications, the permanent test 

fields have showed their excellent potential in assessing the 

performance of remote sensing systems. Literature has 

established a few permanent test sites for remote sensing 

systems (Honkavaara et al., 2008). The use of test sites was 

recommended in various situations, in particular, in the context 

of capturing new remote sensing system, in the beginning of the 

imaging season and after crashes or corresponding.  

Objective of this study was to investigate the feasibility of using 

a permanent test site for assessment of a drone remote sensing 

systems for precision agriculture. The test site was available for 

users during the summer of 2016, and it was used to assess 

performance of several different remote sensing systems. 

2. METHODOLOGY

2.1 Test site 

An agricultural test site was established by the Natural 

Resources Institute Finland (LUKE) and the National Land 

Survey of Finland (NLS) in Vihti, Hovi (60°25'21''N, 

24°22'28''E). The test area included three parcels with barley, 

two with grass and one with quinoa. The agricultural sample 

reference measurements of a barley parcel were carried out in 

8.7.2016 in 36 sample areas of size of 50 cm x 50 cm. The 

measurements included the average plant height (cm), wet 

biomass (kg/m2) and dry biomass (kg/m2). The coordinates of 

the sample areas were measured using differentially corrected 

Trimble GeoXH-GPS with an accuracy of 10 cm in X-, Y- and 

Z-coordinates. The average plant height was an estimate of the

canopy average height. The sample plots were selected so that

the vegetation was as homogeneous as possible inside the

sample areas. Thirteen of the sample plots were 0-squares

without any vegetation, excluding weeds, which was important

to note during analysis.
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Altogether 32 permanent ground control points (GCPs) were 

built and measured in the area. They were marked with wooden 

poles and targeted with circular targets with 30 cm diameter. 

Their coordinates were measured using Trimble R10 (L1+L2) 

RTK-GPS. The estimated accuracy of the GCPs were 2 cm in 

horizontal coordinates and 3 cm in height (Bilker & Kaartinen 

2001). 

Three reflectance panels with nominal reflectance of 0.03, 0.09 

and 0.50 were installed in the area to support the radiometric 

processing.  

Figure 1. Test site with ground control points and sample areas 

in barley field. The background image is orthomosaic based on 

RGB image from drone. 

2.2 Remote sensing data sets 

Remote sensing data captures were carried out with various 

platforms and sensors (Table 1). A professional drone 

(hexacopter with Tarot 960 foldable frame) equipped with a 

hyperspectral camera based on Fabry-Pérot interferometer 

(UAV FPI) and a good quality Samsung NX500 RGB camera 

(UAV RGB) were used. Different versions of this light-weight 

FPI hyperspectral camera (Saari et al., 2011; Oliveira et al., 

2016a) have showed potential in both agriculture (Honkavaara 

et al., 2013; Kaivosoja et al., 2013) and other vegetation 

mapping tasks (Näsi et al., 2015; Berveglieri et al., 2016; 

Moriya et al., 2017; Nevalainen et al., 2017). In this study, 

FPI2012b sensor was configured with 36 spectral bands in 500 

nm to 900 nm spectral range.  In addition, a consumer-class 

low-cost drone (Phantom 4) equipped with a RGB camera 

(Phantom RGB) were used. A manned small aircraft operated 

by Lentokuva Vallas was equipped with a RGB camera (MAV 

RGB) and the FPI camera. Two different flying heights 

providing ground sample distances (GSDs) of 5 and 10 cm were 

used. Additionally, Sentinel-2 data sets were captured during 

the summer. Sentinel-2 image was processed to Level 2A 

product using Sen2Cor Processor. It performs the atmospheric-, 

terrain and cirrus corrections to data providing reflectance 

image mosaic as the output data. The data sets are shown in 

Table 1.  

Georeferencing for drone and aircraft data sets was carried out 

using Agisoft Photoscan software. Different sets of ground 

reference were used, including different numbers of GCPs. The 

professional drone was equipped with NV08C-CSM -GNSS 

receiver thus trajectory data (L1-RTK) was also used. For 

Phantom data, DroneDeploy service (dronedeploy.com) was 

used to create RGB orthomosaic. Only GNSS trajectory (L1) 

was available for georeferencing in this case. 

Radiometric processing of hyperspectral data sets was carried 

out using the FGI’s radBA software (Honkavaara et al., 2013), 

which considers effects of changing illumination conditions, 

BRDF (bidirectional reflectance distribution function) 

phenomena and absolute reflectance transform. The output 

product after geometric and radiometric correction was 

georeferenced reflectance mosaic.  

GSD 

(m) 

Area 

km x km 
Date (2016) 

Sentinel 2 MS 

mosaic 

10-

60 
10 x 10 02.07. 09.07 

UAV FPI 

Hyperspectral 

mosaic+ CHM 

0.15-

0.20 

5 parcels 

(50 ha) 
04.07. 

UAV RGB 

mosaic+CHM 
0.05 

5 parcels 

(50 ha) 
04.07. 

Phantom 4 

RGB mosaic 
0.07 

1 parcel 

(25 ha) 
05.07. 

MAV RGB 

mosaic+CHM 

0.05-

0.10 
8 x 6 06.07 

Table 1. Remote sensing materials used in the study. 

2.3 Estimation methods 

In this study, linear regression models were used to assess the 

performance of different remote sensing datasets for dry 

biomass and nitrogen content estimation. Different features for 

sample areas, such as indices, NDVI (Normalized Difference 

Vegetation Index) and GRVI (Green-Red Vegetation Index), 

and 3D features were extracted from image data based on type 

of data set. Hyperspectral and Sentinel-2 data sets enable to use 

reflectance values and indices. As a 3D feature, average of 

canopy height model (CHM) based on photogrammetric point 

clouds was extracted from the sample areas of drone and MAV 

data, except for low-cost drone because only mosaics were 

available. Finally, multiple linear regression models were tested 

for estimation of biomass. Different sets of variables were used. 

Combining the 3D and spectral features was tested using the 

data from professional drone. The frame-based hyperspectral 

sensor used in this work enables extraction of 3D features 

directly from spectral image data sets (Honkavaara et al., 2013; 

Aasen et al, 2015; Oliveira et al., 2016b).  

3. RESULTS AND DISCUSSION

3.1 Georeferencing 

Altogether 5 GCPs were used in georeferencing of UAV FPI, 

UAV RGB and MAV RGB datasets. For professional drone 

data, three tests to evaluate the georeferencing accuracy of the 

images were performed to compare different methods. First, 
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only GNSS trajectory was considered, and in the second, only 

GCPs were applied. In the third case, both GCP+GNSS were 

used (Table 2). The remaining 27 GCPs in the test site were 

used as check points to determine X-, Y-coordinate accuracies 

of orthomosaics and Z-coordinate accuracies of DEMs for each 

image dataset. Coordinate absolute errors varied between 3.6 

cm to 8.9 cm in x-coordinate, 2.8 cm to 12.6 cm in y-coordinate 

and 5.4 to 10.7 cm in z-coordinate, expect on the case of 

DroneDeploy, where xy absolute error was 183.8cm. The 

reason for higher errors is that Phantom provides only raw L1 

GNSS trajectory data. The UAV RGB had the lowest 3D RMSE 

(root-mean-square error) of 7.3 cm. MAV RGB obtained 3D 

RMSE of 11.7 cm, while UAV FPI presented the highest 3D 

RMSE of 19.3 cm. Visual evaluation of the multi-temporal 

registration of Sentinel-2 images indicates an accuracy of 1-2 

pixels that was consistent with the Sentinel-2 Data Quality 

Report dating back to 01.09.2016. (1.83 pixel reported). 

Sentinel-2 mission objective is to meet 3 m performance with 

95.5 % confidence level. The best combinations of 

georeferenced option were selected for next analysis steps. 

Helmert transformation with 5GCPs was applied in Phantom 

mosaic, in order to reduce the geometric error. This process is 

important to ensure that ground samples are extracted from right 

positions of the mosaic. 

Abs. Error 

X 

RMSE 

(cm) 

Y 

error 

(cm) 

Z 

RMSE 

(cm) 

XY 

RMSE 

(cm) 

3D-

RMSE 

(cm) 

FPI (5GCP) 8.9 12.6 11.6 15.4 19.3 

FPI 

(5GCP+GNSS) 
8.3 11.3 10.8 14.0 17.7 

FPI (GNSS) 7.4 10.7 13.2 13.0 18.5 

RGB (5GCP) 4.0 2.8 5.4 4.9 7.3 

RGB 

(5GCP+GNSS) 
4.0 2.9 5.5 4.9 7.4 

RGB (GNSS) 9.4 5.9 15.9 11.0 19.3 

MAV_5cm 

(5GCP) 
3.6 6.5 9.0 7.4 11.7 

MAV_10cm 

(5GCP) 
6.2 7.5 13.9 9.8 17.0 

Phantom 

DroneDeploy 

(GNSS-L1) 

21.1 182.6 - 183.8 - 

Table 2. RMSE values of coordinates, based on 27 check 

points, for different georeferencing options. 

3.2 Correlation between remote sensing and in situ data 

The remote sensing image data from different platforms and 

sensors were used with in situ measurements to build different 

models based on linear regression in order to estimate biomass 

and nitrogen of the barley field. First, spectral bands of 

Sentinel-2 (figure 2 top) and UAV-based FPI-sensor (figure 2 

bottom) were correlated with in situ field data. The calculations 

were carried out with and without reference plots, which has not 

included any vegetation (0-values). The best correlations (~0.6) 

for Sentinel-2 data were found from visible and NIR area with 

10 and 20 m spatial resolution. For the UAV data, the best 

correlations (~0.9) were found from NIR area. 

Figure 2. Pearson correlations (R) between reference 

measurements of biomass and nitrogen content between 

Sentinel 2 bands (top) and UAV FPI bands (bottom). The 

values near to zero indicate that linear regression is very poor 

and values near to +/-1 indicate strong correlation.  X-axis is 

presenting wavelength (nm) of the spectral band. 

Secondly, two vegetation indices, NDVI (Normalized 

Difference Vegetation Index) and GRVI (Green-Red Vegetation 

Index) were selected to use as features. To select bands of 

hyperspectral and Sentinel-2 data to use for indices, every 

possible band combinations were correlated to ground reference 

and the best of them were used. For example, Reddersen et al. 

(2014) have used same approach earlier. In figure 3 the best 

combination of FPI bands was found using bands 27 (740 nm) 

and 32 (835 nm) to providing 0.948 correlation to reference 

biomass data.   

Figure 3. The Pearsons correlations between different band 

combinations of NDVI and reference measurements of biomass. 

In the case of biomass estimation, the correlations between the 

ground truth and the remote sensing features were over 0.9 for 

the spectral features and CHM at best. The best correlation 

values of over 0.93 were obtained with the GRVI-data from 

UAV and MAV RGB camera and the UAV hyperspectral 

camera; the UAV FPI NDVI estimates were marginally poorer. 

The highest resolution CHM, captured using drone 
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photogrammetry, provided almost as good correlation values as 

the spectral data, of about 0.9.  

The best correlations in the regressions with the nitrogen 

content were on the level of 0.7 and they were achieved with the 

UAV FPI NDVI and GRVI data, and with the consumer class 

UAV RGB camera NDVI data (Figure 4). The Sentinel-2 

correlations were less than 0.1 thus clearly lower than those 

obtained with the UAV. The correlations with the CHM were 

0.1-0.5.  

In all cases, the best results were obtained with the UAV based 

remote sensing materials; results of aircraft data were slightly 

poorer and the Sentinel-2 provided the poorest results.  

The poorer values with Sentinel-2 were likely to be due to the 

bigger GSD and the challenge to correlate the field 

measurements (0.5 m*0.5 m) to the low resolution satellite (10 

m) measurements. The upscaling of field observations to

satellite datasets is thus important topic for further research.

Figure 4. Correlations (R) from the linear regression of the dry 

biomass (top) and nitrogen (bottom) and the remote sensing 

NDVI, GRVI and CHM features from different data sets. 

3.3 Estimation of biomass using linear regression models 

The use of multiple linear regression models improved 

estimation results comparing correlation with single features 

(Table 3). FPI based hyperspectral features provided slightly 

better results than DN values of RGB camera. In addition, 3D 

features (CHM) were combined to spectral features. Adding the 

FPI based CHM to spectral features did not improve results. 

Instead, the combination of the FPI spectral features and the 

RGB-based CHM provided slightly better results than any other 

used set. Leave-one-out cross correlation method was used to 

assess the results. 

Correlation 

coefficient r 

Mean 

absolute 

error 

(kg/m2) 

RMSE 

(kg/m2) 

FPI spectral 0.9344 0.023 0.0273 

FPI spectral+ 

FPI CHM 
0.9344 0.023 0.0273 

FPI spectral+ 

RGB CHM 
0.9383 0.0214 0.0265 

RGB DN 0.9223 0.0236 0.0296 

RGB DN+ 

RGB CHM 
0.9265 0.0218 0.0289 

Table 3. Biomass estimation results: Correlation coefficient, 

Mean absolute error and root-mean-square error (RMSE) from 

professional drone data using multiple linear regression models 

with different variable combinations. 

Also Bendig et al. (2015) and Tilly et al. (2015) have reported 

that combining 3D features to spectral features for estimation of 

barley biomass slightly improved results. In the further studies 

more comprehensive estimators such SVR (Support Vector 

Regression) or Random Forest algorithms should be assessed. 

4. CONCLUSIONS

An open agricultural test site in Hovi was established in 2016 

and used for testing the geometric performance and the biomass 

and nitrogen content estimation performance of various remote 

sensing systems. The permanent ground control points were 

advantageous for assessing the geometric performance of the 

systems. Biomass and nitrogen content samples were used to 

estimate the wall-to-wall performance of various remote sensing 

systems. Assessing different systems in similar environment 

provides efficient tool for comparison of their performance. 

Such test environment will also help in optimizing the 

algorithms used for each different sensor/system combination. 

Open test environments are valuable at least for sensor and 

system manufacturers, and for the users of the systems, e.g. 

commercial companies or farmers. 
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