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ABSTRACT: 

The inability to detect the Emerald Ash Borer (EAB) at an early stage has led to the enumerable loss of different species of ash trees. 

Due to the increasing risk being posed by the EAB, a robust and accurate method is needed for identifying Individual Tree Crowns 

(ITCs) that are at a risk of being infected or are already diseased. This paper attempts to outline an ITC delineation method that employs 

airborne multi-spectral Light Detection and Ranging (LiDAR) to accurately delineate tree crowns. The raw LiDAR data were initially 

pre-processed to generate the Digital Surface Models (DSM) and Digital Elevation Models (DEM) using an iterative progressive TIN 

(Triangulated Irregular Network) densification method. The DSM and DEM were consequently used for Canopy Height Model (CHM) 

generation, from which the structural information pertaining to the size and shape of the tree crowns was obtained. The structural 

information along with the spectral information was used to segment ITCs using a region growing algorithm. The availability of the 

multi-spectral LiDAR data allows for delineation of crowns that have otherwise homogenous structural characteristics and hence 

cannot be isolated from the CHM alone. This study exploits the spectral data to derive initial approximations of individual tree tops 

and consequently grow those regions based on the spectral constraints of the individual trees. 

1. INTRODUCTION

The inability to detect the Emerald Ash Borer (EAB) at an early 

stage has led to a colossal loss of different species of ash trees 

across Canada. The rapid spread of the EAB is attributed to the 

inability to detect the infected ash trees at an early stage and 

mitigate the risk of exposure to the neighbouring trees in the 

vicinity. The current environmental risks being posed by the EAB 

has led to a need for an accurate Individual Tree Crown (ITC) 

delineation method to identify tree crowns that are at a risk of 

being infected or are already diseased. In this study, an ITC 

delineation method was proposed that employed airborne multi-

spectral Light Detection and Ranging (LiDAR) to accurately 

delineate tree crowns. 

Multispectral LiDAR is being increasingly used for analysing 

large scale forest scenes and improving ITC delineation. 

Traditional methods of ITC delineation have primarily resorted 

to exploiting structural information about the crown to develop 

segmentation algorithms such as edge detection (Brandtberg et 

al., 1998), (Culvenor, 2002), (Koch et al., 2006), (Popescu et al., 

2003), (Pouliot et al., 2005), region growing (Erikson, 2004) and 

watershed segmentation (Chen et al., 2006), (Schardt et al., 

2002). Though successful results have been obtained, erroneous 

segmentation still occurs in areas of dense forest scenes due to 

the overlap of different tree crowns. With the availability of 

multispectral LiDAR data, research is now oriented towards 

exploiting spectral information along with structural information 

for improving the accuracy of ITC delineation.  

In a dense forest scene, tree crowns have varied sizes and overlap 

among different crowns can form a tree cluster. Due to presence 

of tree clusters, ITC delineation from structural information 

alone, becomes a relatively difficult task. Conifers tree tops are 
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easy to detect whereas deciduous tree tops are relatively difficult 

to delineate. Deciduous tree tops have a flat crown structure 

which causes adjacent deciduous trees to have a significant 

overlap. Existing ITC delineation methods often employ a 

localized treetop to enhance the segmentation results. However, 

methods based on edge detection, region growing and watershed 

segmentation inevitably fail to recognize a boundary between 

two overlapping deciduous crowns and a tree cluster may hence 

be detected as a single crown. Additionally, the structural 

information does not entail a homogeneous signature for the 

entire crown as the boundaries of the crown tend to have different 

heights relative to the tree top. This consequently results in 

distortions and over segmentation of a single crown type, as well. 

In recent years both LiDAR and passive multispectral optical 

imagery have been combined in data fusion techniques to 

enhance ITC delineation. However, majority of the studies have 

focused on deriving forest parameters from the multi-spectral 

optical imagery data rather than augmenting the ITC delineation 

itself (Zhen et al., 2016). The traditional methods of ITC 

delineation from integrated data have used the active imagery 

(i.e. LiDAR) for ITC delineation and incorporated the 

multispectral imagery at a later stage. By incorporating the 

spectral information with structural information in the form of 

multi-dimensional segmentation, the boundaries between 

different tree crown types can be identified to enhance existing 

ITC delineation techniques. Additionally, the spectral 

information captures a homogeneous region for a single crown 

type which prevents over segmentation of a single crown. The 

spectral information coupled with structural information can be 

employed to successfully resolve over segmentation of single 

crowns and under segmentation of overlapping crowns. The 

results can be cross validated and supplemented by classification 

techniques to identify erroneous segmentation.   

a
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In this study, the spectral information is used to improve the ITC 

delineation at three stages. During DEM generation phase, 

preliminary classification of spectral data is used to eliminate 

non-ground classes with high accuracy. The remaining point 

cloud is further refined using a TIN (Triangulated Irregular 

Network) densification technique. The improved accuracy of the 

DEM inevitably propagates to accurate tree height 

representations in the CHM. During pre-segmentation phase, the 

spectral data is used for accurate tree top identification for seed 

selection. The homogeneous tree structures in dense forest scenes 

make it relatively difficult to identify tree tops. Using the spectral 

data, the individual tree species within a tree cluster can be 

detected and multiple tree tops corresponding to multiple trees 

can be identified. In the segmentation phase the spectral data is 

used to augment the region growing algorithm in detecting 

boundaries within dense forest scenes with homogeneous tree 

structures. 

2. STUDY AREA AND DATA

In this study the LiDAR data were obtained by Optech Titan 

multispectral LiDAR system which offers three spectral bands at 

wavelengths of 532 nm, 1064 nm and 1550 nm. The scan was 

performed over West Rogue, Scarborough area located southern-

east of Toronto, Ontario, Canada. The raw LiDAR point data 

were provided in the form of three scans corresponding to the 

three wavelengths. The three scan strips were captured from 

different viewing angles. The raw LiDAR scan is illustrated in 

figure 1. 

Figure. 1 Titan Multispectral LiDAR Scanner Data 

Three zones were extracted from the raw LiDAR point cloud 

based on the variation of cover types and the elevation profiles. 

Zone 1 captures predominantly urban cover types with presence 

of isolated tree clusters. The terrain exhibits low relief and the 

elevation profile is primarily homogenous. Zone 2 captures a 

mixture of urban and forest scenes with high relief. The elevation 

profile is heterogeneous with higher elevations observed near the 

forest scenes. Zone 3 predominantly represents forest scenes with 

significantly high relief. The trees in zone 3 have significant 

overlap. Each zone measures around 170 by 145 meters. The 

location and proximity of the zones is illustrated on the satellite 

image shown in figure 2. 

Figure. 2 The three study zones overlaid on the true colour 

composite of worldview image 

3. METHODOLOGY

As presented in figure 3, the LiDAR point cloud was initially 

processed to generate DEM, DSM and subsequently CHM. The 

intensity data was normalized and the spectral information was 

extracted. The combined spectral and structural information was 

used to identify tree tops and perform region growing 

segmentation. The steps are described in detail in the following 

subsections.  

Figure 3. Proposed Methodology for ITC Delineation from 

Multi-Spectral LiDAR Data 

Zone 1
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3.1 Intensity Normalization 

The intensity data was normalized with respect to range using the 

following equations:  

  

   

 

    

   

  

 

   

 

  

  

   

 

     

   

  

𝑅 = √(𝐸𝐹 − 𝐸𝐺)2 + (𝑁𝐹 − 𝑁𝐺)2 + (𝐻 − ℎ)2 (1)

where 𝐸 𝑁 = The coordinates of the laser scanner𝐹 , 𝐹

𝐸𝐺 , 𝑁𝐺 = The coordinates of a LiDAR point

𝐻 = Flying height from GNSS

ℎ = Height of the LiDAR point

2𝑅
𝐼𝑐 = 𝐼 ∗ ( 2 ) (2)

𝑅𝑀𝑎𝑥

where 𝐼𝑐 = Normalized intensity

𝐼 = Original intensity

𝑅𝑀𝑎𝑥 = The maximal range

3.2 Digital Surface Model Generation

In this study, each of the three zones was processed to initially

generate a gridded DSM. The DSM was generated by only

accounting for the first returns and discarding subsequent returns.

The resulting point cloud was then gridded, using Inverse

Distance Weighted (IDW) interpolation, to later filter out the low

frequency elevation trend (DEM) in the data. The grid size was

determined by computing the average distance between pulses in

the irregular point cloud using the following equation (Zhang,

2009): 

𝑑 = √
1

𝜆
 (3) 

where d = average distance between pulses 

𝜆 = laser pulse density in returns/m2

A grid size smaller or equal to the average pulse spacing was then 

selected to prevent any unintended interpolation. For the three 

zones the optimal grid size was determined to be 0.5 meters. The 

gridded DSM for the three datasets are illustrated in figure 4. 

Figure 4. DSM - Zone 1 (Top Left - Urban with low relief), 

Zone 2 (Top Right – Urban and Forest scenes with high relief) 

and Zone 3 (Bottom – Forest scenes with high relief) 

3.3 Digital Elevation Model Generation 

The DEM was computed using preliminary classification results 

and an improved progressive TIN densification algorithm (Zhao 

et al., 2016 and Axelsson, 2000). Each zone was initially 

classified into three classes (Trees, Buildings and Terrain) using 

K-means clustering algorithm. The non-terrain features were

subsequently removed and a TIN based model was generated

from the remaining terrain points (Zhao et al., 2016).

Although the classification itself can be sufficient in removing 

majority of the non-ground points, it can inevitably lead to over 

erosion of the ground data. Due to over erosion of the ground data 

the interpolation can be inaccurate and hence densification of the 

ground points is required. The progressive TIN densification 

algorithm triangulates the classified ground points and iteratively 

introduces new ground points to the dataset. The overview of the 

process is illustrated in figure 5. 

Figure 5. Flowchart for DEM generation 

The criteria for the addition of the point to the triangulation were 

measured with respect to the normal distance from the point to 

the façade of the TIN and the angles to each of three vertices of 

the TIN (Axelsson, 2000). The initial and final triangulation 

stages are captured in the figures 6 and 7, respectively. 

Figure 6. Initial Triangulation of Classified Ground Points – 

Zone 3 (Pre - Progressive TIN Densification) 
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Figure 7. Final Triangulation – Zone 3 (Post Densification) 

The densified point cloud was gridded using IDW interpolation 

with a grid size of 0.5 meters. The DEMs for the three zones are 

illustrated figure 8.  

Figure 8. DEM with 0.5-meter grid size - Zone 1 (Top Left), 

Zone 2 (Top Right) and Zone 3 (Bottom) 

3.4 Individual Tree Crown Delineation 

The CHM was generated by eliminating the low frequency 

elevation trend (DEM) from the DSM. The structural information 

pertaining to the height and size of the tree crowns was used to 

determine seeds for the region growing algorithm. 

3.4.1 Masking Non-Tree Pixels: The structural information 

from the CHM and the spectral information was communally 

used to generate a non-tree mask. A Normalized Differenced 

Vegetation Index (NDVI) was generated, using the normalized 

intensity data in the visible and near infrared part of the spectrum, 

to isolate vegetation pixels. The tree height information from the 

CHM was then used to further filter out the non-tree pixels. A 

rule based approach was used to identify non-tree pixels: a pixel 

was labelled as non-tree if the NDVI and CHM values were 

below a threshold 0.35 and 4 meters respectively. The threshold 

values were determined empirically.  

3.4.2 Tree Top Identification: In this study, multi-scale 

method was adopted to account for different crown sizes in the 

forest scene (Schardt et al., 2002), (Gong et al., 2002). The 

multiscale approach was used to detect horizontal cross sections 

of the tree, as compared to tree tops, to initialize a large seed for 

seeded region growing segmentation. This approach also 

minimized the false tree top detection originating from complex 

deciduous tree structure. In addition to the structural information 

from the CHM, the spectral information was also exploited in the 

initial seed selection. The three spectral bands and the CHM were 

morphologically decomposed by an opening operation using a 

disk structuring element (SE). To account for different crown 

sizes, the decomposition was performed iteratively with different 

sized disk SEs. The regional maximum was then selected as the 

seed. Different scale spaces were used as estimates of the 

different horizontal cross sections of the tree crowns. The larger 

scale spaces were consequently omitted to prevent initialization 

of a large seed, as that could falsely identify a region larger than 

the actual crown size.  

3.4.3 Region Growing: With the seeds identified, region 

growing with neutrosophic logic was performed (Shan et al., 

2008). The traditional methods of region growing rely on some 

measure of distance to merge pixels to their respective seeds, 

whereas neutrosophic logic introduces a degree of indeterminacy 

when evaluating the cost function to grow the seeds. The criterion 

for addition of a pixel to its respective seed depends on two 

quantities: degree of truth and level of indeterminacy. The degree 

of truth measures the normalized difference of the pixel value, of 

the pixel to be added to the seed, from the mean of the seed. The 

degree of indeterminacy introduces a measure of variance of the 

small circular neighbourhood surrounding the pixel. In this study, 

a small degree of indeterminacy implied that the region around 

the pixel was homogeneous hence representing a single tree. On 

the contrary a large indeterminacy value was indicative of a more 

heterogeneous region hence indicating presence of another tree 

crown type. For merging the pixels to their respective seeds, a 

rule based approach was used. If the degree of indeterminacy was 

smaller than a threshold value than the degree of truth of the 

individual pixel was calculated. A level of indeterminacy higher 

than the threshold value was indicative of the presence of another 

crown type and hence the degree of truth of a small circular 

region surrounding the pixel was calculated instead. The 

mathematical notation of the criteria is illustrated in expression 4 

below (Shan et al., 2008).  

∀𝑃𝑖 ∈ 𝐽: {((𝐼(𝑃𝑖) < 𝐼𝑇ℎ𝑟 ∧ 𝑇(𝑃𝑖) > 𝑇𝑇ℎ𝑟)

∨ (𝐼(𝑃𝑖) > 𝐼𝑇ℎ𝑟 ∧ 𝑇′(𝑃𝑖) > 𝑇′
𝑇ℎ𝑟))

→ 𝑃𝑖 ∈ 𝑆𝑖}

(4) 

where       𝑃𝑖 = Individual pixel

  𝐽 = Image domain 

𝑆𝑖 = The current seed

𝐼(𝑃𝑖) = The indeterminacy value around pixel 𝑃𝑖

𝑇(𝑃𝑖) = The degree of truth of pixel 𝑃𝑖

𝑇′(𝑃𝑖) = The degree of truth of a circular region

around pixel 𝑃𝑖

4. RESULTS AND DISCUSSION

The initial seed selection, for the three zones, is illustrated in 

figure 9. The grown regions, with non-tree pixels masked out, are 

illustrated in figure 10. 
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Figure 9. Identified Seeds 

Figure 10. Segmented crowns using spectral and structural 

constraints- Zone 1 (Top Left), Zone 2 (Top Right) and Zone 3 

(Bottom) 

For zone 1, majority of the canopy was located in an urban area 

with predominantly isolated tree cluster types. Few cases of 

dense overlapping tree clusters were observed. Zones 2 and 3 had 

presence of dense forest scenes with homogenous morphology. 

Based on visual observation tree top identification was relatively 

accurate in isolated and dense tree clusters, owing to the 

exploitation of the spectral bands.  Existing ITC delineation 

techniques, based on active imagery, only examine structural 

information of the tree canopy to initialize a tree top. In areas of 

isolated tree clusters this approach is relatively accurate as the 

tree tops can be identified based on morphological filtering of the 

height models. In areas of dense forest scenes, the broad structure 

of deciduous trees can cause significant overlap between trees 

and tree top identification based on tree height models is 

relatively difficult. In the method proposed, the spectral 

information was used to identify different tree species within a 

dense forest scene with broad deciduous tree structure. The 

identification of individual tree species was then used to 

morphologically decompose the CHM and identify tree tops of 

trees with significant overlap. Such decomposition, based on 

CHM itself, only identified a single tree top for trees with 

significant overlap. Figure 11 illustrates the tree top identification 

based on the spectral constraints and compares it to tree top 

identification based tree height information alone. 

Fig. 11 Boundaries of identified tree tops superimposed on 

Band 1 (Top Row - With spectral constraints, Bottom Row - 

Without spectral constraints) 

The identified tree tops were grown based on the spectral and 

structural constraints. The growth of the seed towards the 

boundary of the tree can introduce distortions as the height model 

varies from the tree top to the boundary of the tree. Based on 

visual observation of segmented trees in figure 10, it was noted 

that trees in dense tree clusters were delineated based on spectral 

characteristics instead of morphological constraints; hence the 

segmentation was uniform from tree top to the outer boundaries 

of the tree. Since spectral information preserves a homogeneous 

structure for the entirety of the tree, the distortions were 

minimized during the segmentation. Within a forest scene, the 

contrasting spectral signatures among trees were used to separate 

and identify individual trees within a dense structurally 

homogeneous tree cluster. In zones 2 and 3 the criteria for seed 

growth was predominantly based on the spectral constraints as 

the CHM represented a homogeneous region due to the overlap 

among trees. In each spectral band different tree species were 

identifiable and hence the regions were grown if the merge 

criteria were satisfied in multiple spectral bands. The growth of 

the seed was contingent upon the spectral and structural distance 

to the tree pixel (degree of truth) and a measure of spectral 

variance around the tree pixel (level of indeterminacy). The 

degree of indeterminacy introduces a measure of homogeneity 

around the tree pixel. This is indicative of presence of other tree 

species which are not identifiable based on a measure of distance 

alone. In the study the indeterminacy degree was used to identify 

whether the tree pixel belonged to the growing seed based on the 

neighbouring pixels around it. The level of indeterminacy was 

also a measure of location of the tree pixel within the tree. A more 

indeterminate (higher variance) region indicated a higher 

probability of the tree pixel being on the boundary of the tree. 

Criteria for merging the pixel was then based on a circular 

neighbourhood around the current tree pixel rather than the tree 

pixel itself. For more determinant (lower variance) region the tree 

pixel was relatively definite to be part of the tree represented by 

the growing seed and hence the merge criteria were based on that 

individual tree pixel alone.    

Cases of over segmentation were also observed in zones 2 and 3. 

Initial seed selection based on the spectral constraints was 

imperative in identifying individual trees in a cluster, however 

there were cases where multiple trees were detected in a single 

tree crown. To mitigate this, different sized structuring elements 

were used to morphologically decompose the zones but a large 

sized seed would inevitably identify multiple tree crowns. Seed 

selection was therefore limited to only a range of structuring 

element sizes. This effect was prominent in large homogeneous 

tree clusters, in zone 2, that were not separable even in the 

spectral domain. An overall improvement in the accuracy of seed 

selection and the final segmentation was observed with the 

incorporation of spectral data.  
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5. CONCLUSION

Based on the multispectral LiDAR data a new approach to ITC 

delineation was developed. The spectral data were used to 

improve the quality of the segmentation in three phases. Spectral 

data was exploited initially in the pre-processing phase to 

improve tree height representations in the CHM. Using 

constraints in the spectral and structural domain tree pixels were 

isolated and tree tops were identified. Multi-dimensional 

segmentation was performed to delineate tree crowns based on 

the unique spectral signatures of tree species.  The method was 

effectively able to incorporate spectral data in isolating different 

tree species and hence augment the segmentation. The under 

segmentation of trees due to the homogeneity of the 

morphological information in the CHM was resolved by 

introducing spectral data in the segmentation procedure. The 

proposed method was seen as an improvement over single 

channel segmentation.  

Treetop identification remains an important step to accurately 

delineate ITCs. Dense forest scenes with broad structured trees 

can then be identified with larger tree tops proportional to their 

structure to improve segmentation. Classification of different tree 

species based on spectral signatures can be used to supplement 

the existing segmentation techniques and validate the shape of 

the extracted tree crowns. In dense forest scenes classification of 

different tree species can further supplement and constrain the 

growth of the seed beyond the structural bounds of the tree. Work 

is being continued in improving segmentation and tree top 

identification from classification of different tree species. 
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