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ABSTRACT:

In this study an automatic method for estimating both the tree stem and the tree canopy biomass is presented. The point cloud tree
extraction techniques operate on TLS data and models the biomass using the estimated stem and canopy volume as independent
variables. The regression model fit error is of the order of less than 5 kg, which gives a relative model error of about 5 % for the stem
estimate and 10–15 % for the spruce and pine canopy biomass estimates. The canopy biomass estimate was improved by separating the
models by tree species which indicates that the method is allometry dependent and that the regression models need to be recomputed
for different areas with different climate and different vegetation.

1. INTRODUCTION

In recent years there has been an increased interest in using ter-
restrial laser scanning (TLS) as a tool in forest inventory (Liang
et al., 2016). The emphasis has been to estimate forest variables
such as stem diameter at breast height and tree height (Olofsson
et al., 2014) as well as modelling the stem profile (Thies et al.,
2004, Henning and Radtke, 2006, Maas et al., 2008, Liang et al.,
2014, Mengesha et al., 2015, Olofsson and Holmgren, 2016) and
branches (Raumonen et al., 2013).

The assesment of above ground biomass of trees is essential when
evaluating tree populations in forests (Olschofsky et al., 2016).
Therefore there is a need to automate the measurements. There
are a number of studies that have shown that the estimate of tree
biomass can be improved using TLS compared to traditional bio-
mass models (Yu et al., 2013, Kankare et al., 2013, Hauglin et
al., 2013, Calders et al., 2015). The techniques could for instance
be used to estimate biomass in densely stocked young tree plan-
tations (Seidel et al., 2013) or when modelling the tree biomass
change (Srinivasan et al., 2014).

In this study an automatic method for estimating both the tree
stem and the tree canopy biomass is presented. The point cloud
tree extraction techniques operate on TLS data and models the
biomass using the estimated stem and canopy volume as inde-
pendent variables.

2. METHODOLOGY

2.1 Field Data

The field trees were sampled from the Flakaträsk site in north-
ern Sweden (64◦16’13.53” N, 18◦29’52.59” E), Table 1. Eight
spruce and eight pine trees were cut down and the biomass of the
stems, branches and needles were measured in the field (Goude,
2016). The biomass of the branches and needles were combined
to a canopy biomass class.
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The terrestrial laser instrument used in the measurements was a
Trimble TX8 with a field of view: 360◦×317◦, beam divergence
0.34 mrad, 1 million laser points per second and wavelength 1.5
µm (Near-IR). A multiscan setup was used with three instrument
positions surrounding each tree, Figure 1.

Figure 1. Example of a point cloud from a laser scanned forest
plot. Shading occur behind the trees and under the measuring

instrument. The number of shaded areas can be reduced if
several instrument positions are used.

2.2 Stem and Canopy Volume Extraction Algorithms

The stems of the trees were detected and modelled using a TLS
single tree extraction algorithm (Olofsson and Holmgren, 2016)
which is based on the idea that stems are approximately smooth
and shaped like cylinders. A voxel– based model was used where
small patches of the stem surfaces were extracted using eigen de-
composition of the laser point cloud (Olofsson and Holmgren,
2016).

The stem surface patches were connected and the center of the
stem was estimated by calculating the curvature of the stem sur-
face. All points that belong to stem surface patches pointing to
the same center were classified as stem points, Figure 2,3. All
connected stem points were used to fit cylinders as models of part
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Species DBH [mm] Height [m]
Pine 206 17.2

Spruce 116 10.1
Pine 170 15.3

Spruce 180 12.4
Spruce 87 8.2
Spruce 134 12.4
Pine 160 15.7

Spruce 103 11.0
Pine 182 16.6
Pine 112 12.4
Pine 194 16.0

Spruce 64 6.8
Spruce 125 11.5
Pine 236 15.9

Spruce 147 12.4
Pine 142 15.3

Table 1. Stem diameter at breast height and tree height for the
field trees

of the stems (Olofsson and Holmgren, 2016). Stem cylinders po-
sitioned above each other were connected to stems. In this way a
stem curve was extracted using cylinders with decreasing radius
as a function of height.

Figure 2. A laser scanned point cloud of part of a tree. The data
observations that were classified as stem points by the filter

algorithm are coloured green.

Once the cylinder models of the stems were calculated, the vol-
ume of the stems were estimated by the modelled stem cylin-
ders. The top part of the tree, where the single tree detection
algorithm was unable to detect stem cylinders, was modelled as a
cone reaching the highest registered laser point in the canopy.

The horizontal positions of the detected stems were used when
extracting the canopies of the trees. All laser points within the
search radius 1.5 m from a stem was designated to a tree. The
closest stem was chosen if a point was within the search radius of
several trees.

The point clouds of each tree were subdivided into three classes:
stem, canopy and understory, Figure 4. The stem points were
classified by the TLS single tree extraction algorithm (Olofsson
and Holmgren, 2016). The understory points were classified as
all non stem points below 2 m. The remaining points were clas-
sified as canopy.

The tree crowns were modelled as circles surrounding the de-
tected stems, Figure 4. The laser points classified as canopy was

Figure 3. A laser scanned point cloud of two trees standing close
together. The data observations that were classified as non stem
points by the filter algorithm are coloured gray. The data points

classified as stem points are used when cylinder fitting stem
segments.
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used in the estimate of the crown volume. The average laser point
distance to the estimated stem line was used as an estimate of
the canopy radius at each 0.5 meter height interval. The canopy
volume was estimated as the sum of the volume of the conical
frustrums connecting two consecutive crown circles, Equation 1.

Vfrustrum =
πh

3
(r1

2 + r1r2 + r2
2) (1)

where Vfrustrum is the volume of a conical frustrum, r1 and r2
are the radii of two consecutive circles and h is the height interval
between the two circles.

2.3 Biomass Models

Models of the tree stem and canopy biomass were estimated using
linear regression, Equation 2,

Mbio = kVtls +m (2)

where Mbio is the biomass of the stem or canopy (branches and
needles), Vtls is the TLS estimated volume of the stem or canopy,
k is the slope of the line, and m is the y–axis intersection of the
line.

The model fit of the regression lines were evaluated using the root
mean square error RMSE, Equation 3,

RMSE =

√∑n

i=1
(xi − yi)2

n
(3)

where xi is the modeled biomass of tree number i, yi is the ob-
served biomass of tree number i and n is the number of trees.

3. RESULTS AND VALIDATION

The field data and the stem and canopy biomass linear models
are shown in Figure 5 and Figure 6. The estimate of the canopy
biomass is improved if the models are separated by tree species,
Figure 6, Table 2. This is probably due to the fact that spruce
canopies are more dense than pine canopies. This means that
more accurate models for above ground biomass could be devel-
oped if tree species are detected automatically.

The regression model fit error is of the order of less than 5 kg,
which gives a relative model error of about 5 % for the stem es-
timate and 10–15 % for the spruce and pine canopy biomass es-
timates, Table 2. These values are comparable to other studies
where for instance (Yu et al., 2013) received a RMSE of 12.5 %
for stem biomass and (Hauglin et al., 2013) retrieved an above
ground biomass of 12.9 % and 11.9 % overall accuracy for Scots
Pine and Norway spruce respectively. (Calders et al., 2015) re-
trieved a RMSE of 9.7 % for 65 Eucalyptus leucoxylon, micro-
carpa and tricarpa using multi-scan TLS.

The fact that the canopy biomass estimate was improved by sep-
arating the models by tree species indicates that the method is
allometry dependent and that the regression models need to be re-
computed for different areas with different climate and different
vegetation. This should however be possible to do for a number
of regions in each country. The models for stem biomass seems
to be less dependent on tree species.

Figure 4. Terrestrial laser scanner data classified into tree stem
(blue), understory (brown) and canopy (red). The radii of the

light blue circles are the average distances from the stem of the
canopy points at each height interval.
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Figure 5. A linear model of stem biomass using TLS estimated
volume as independent variable.

Figure 6. A linear model of canopy biomass (branches and
needles) using TLS estimated volume as independent variable.
The models are tree species specific which gives better model
fits compared to building only one model for both tree species,

Table 2.

biomass class m k RMSE [kg]
canopy spruce -0.90 1.23 2.95
canopy pine -3.20 0.96 3.75
canopy both 0.86 0.83 4.16
stem both -0.99 325.06 4.50

Table 2. Tree biomass model parameters and RMSE for the
model fit, Equations (2,3).
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