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ABSTRACT: 

Pine wilt disease is caused by the pine wood nematode (Bursaphelenchus xylophilus) and Japanese pine sawyer (Monochamus 

alternatus). This study attempted to detect damaged pine trees at different levels using a combination of airborne laser scanning 

(ALS) data and high-resolution space-borne images. A canopy height model with a resolution of 50 cm derived from the ALS data 

was used for the delineation of tree crowns using the Individual Tree Detection method. Two pan-sharpened images were 

established using the ortho-rectified images. Next, we analyzed two kinds of intensity-hue-saturation (IHS) images and 18 remote 

sensing indices (RSI) derived from the pan-sharpened images. The mean and standard deviation of the 2 IHS images, 18 RSI, and 

8 bands of the WV-2 and WV-3 images were extracted for each tree crown and were used to classify tree crowns using a support 

vector machine classifier. Individual tree crowns were assigned to one of nine classes: bare ground, Larix kaempferi, Cryptomeria 

japonica, Chamaecyparis obtusa, broadleaved trees, healthy pines, and damaged pines at slight, moderate, and heavy levels. The 

accuracy of the classifications using the WV-2 images ranged from 76.5 to 99.6%, with an overall accuracy of 98.5%. However, 

the accuracy of the classifications using the WV-3 images ranged from 40.4 to 95.4%, with an overall accuracy of 72%, which 

suggests poorer accuracy compared to those classes derived from the WV-2 images. This is because the WV-3 images were 

acquired in October 2016 from an area with low sun, at a low altitude. 

* Corresponding author

1. INTRODUCTION

Pine wilt disease is expanding in Japan, where it has recently 

been encroaching on high-altitude and high-latitude areas that 

had previously been unaffected. This disease is also expanding 

in East Asia and Western Europe (Abellira et al., 2011; EPPO, 

2014). Pine trees infected with pine wilt experience a leaf 

color change, first to yellowish green and gradually changing 

from yellow to brown and gray. The extent of damage is 

therefore typically assessed by examining leaf color from the 

ground by visual observation. However, this method leads to 

underestimation, as has been revealed by studies using aerial 

photographs and satellite images (Osamu, 2010; Isao, 2009).  

In this study, we performed crown delineation using an 

individual tree detection (ITD) method and a canopy height 

model (CHM) created using airborne laser scanning (ALS) 

data, which leads to higher accuracy than that obtained by 

satellite images alone. We then classified the data using a 

support vector machine (SVM) with the original WorldView 

(WV)-2/3 bands and intensity–hue–saturation (IHS) and 

remote sensing indices (RSIs). To classify the trees by the level 

of damage, it is essential to use both the original bands of the 

multispectral images and additional information (Waser et al., 

2014). Therefore, we used IHS, a color space different from 

red–green–blue (RGB) and RSIs, as an explanatory variable 

combining the original bands. IHS and RSIs are also effective 

in creating masks for unnecessary objects such as clouds, 

shadows, and artificial structures.  

We then compared the classification accuracy of WV-2 taken 

in summer and WV-3 taken in autumn, and attempted to 

determine the increase in damage over time using satellite 

images from the two seasons. 

2. MATERIALS

2.1 Study Area 

The eastern area of Matsumoto, central Japan, was selected as 

the study site. The area of the site was approximately 31 km2. 

The southern part of the site is considered to have light pine 

wilt damage, whereas the northern part is considered to have 

serious damage. The elevation of the site ranges from 550 to 

1200 m above sea level. The average precipitation is 

approximately 1000 mm per year, and the mean annual air 

temperature is approximately 11.8°C. 

2.2 Remote Sensing Data 

We used two types of remote sensing data, (1) airborne laser 

data to delineate tree tops and crowns and (2) satellite images 

to create masks and classify tree crowns.  
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2.2.1 ALS data and preprocessing: ALS data were 

acquired in 2013 for nearly all forested regions within the 

study area. The point density of the collected point clouds was 

at least 4 points per m2. 

A digital surface model (DSM) and a digital elevation model 

(DEM) of 50-cm resolution were generated using the point 

cloud. A CHM was then created by subtracting DEM from 

DSM. The original CHM contained a large amount of missing 

data; therefore, we supplemented the dataset using focal 

statistics and filters in ArcGIS 10.0.  

2.2.2 WorldView-2/3 images and preprocessing: High-

spatial-resolution digital imagery was acquired on June 10 and 

October 12, 2016, from a WV-2/3 satellite. These satellites 

collect eight bands of multispectral images and a panchromatic 

image. The resolution of these images was 1.8 m for 

multispectral and 0.45 m for panchromatic images.  

The images were orthorectified using a 10-m DEM. The 

multispectral and panchromatic images were then 

pansharpened using Gram–Schmidt Pan Sharpening in ENVI 

5.3. Finally, the WV-3 image was georectified to the WV-2 

image.  

3. METHODS

3.1 Delineation of Tree Tops and Crowns 

The delineation of tree tops and crowns was performed using 

the CHM data. We first smoothed the CHM data with a 

Gaussian filter, and then searched for tree tops (local maxima). 

Finally, we delineated the tree crowns from a watershed 

algorithm using the obtained tree tops. The center of gravity of 

a tree crown was designated as a true tree top. In total, 896,453 

tree crowns were detected in the study area. 

3.2 Explanatory Variables 

We extracted a total of 32 variables from each satellite image. 

These variables included the eight original multispectral bands 

of each satellite image, two types of IHS image, and 18 RSIs. 

3.2.1 IHS creation: The RGB and RGNIR1 bands were 

color-transformed to IHS images, which have three channels: 

intensity (I), hue (H), and saturation (S). All RSIs were 

calculated from the eight multispectral bands of a satellite 

image using ENVI 5.3. All IHS images and RSIs used in this 

study are described in Tables 1 and 2. 

Name Bands 

Intensity RGB 

Hue RGB 

Saturation RGB 

Intensity RGNIR1 

Hue RGNIR1 

Saturation RGNIR1 

Table 1. Description of intensity–hue–saturation (IHS) 

channels 

Abbreviation Name Formula 

GNDVI Green normalized (NIR1 – G)/ 

difference 

vegetation index 

(NDVI) 

(NIR1 + G) 

NDVI_57 NDVI 
(NIR1 – R)/ 

(NIR1 + R) 

NDVI_58 NDVI 
(NIR2 – R)/ 

(NIR2 + R) 

NDRE RedEdge NDVI 
(NIR1 – RE)/ 

(NIR1 + RE) 

NDVI_35 Green–red ratio (G – R)/(G + R) 

NDVI_48 NIR–yellow ratio 
(NIR2 – Y)/ 

(NIR2 + Y) 

REY 
RedEdge–yellow 

ratio 
(RE – Y)/(RE + Y) 

NDSI 

Normalized 

difference soil 

index 

(G – Y)/(G + Y) 

NHFD 

Non- 

homogeneous 

feature 

difference 

(NHFD) 

(RE – C)/(RE + C) 

NDWI 

Normalized 

difference water 

index 

(C – NIR2)/ 

(C + NIR2) 

ARVI 

Atmospherically 

Resistant 

Vegetation Index 

(NIR1-(R-(B-R)))/ 

(NIR1+(R-(B-R))) 

DD 

Difference  

Difference  

Vegetation Index 

(2*NIR1-R)-(G-B) 

NIRRY 
NIR-Red- 

Yellow ratio 
NIR1/(Y+R) 

NORM NIR Normalized NIR 
NIR1/ 

(NIR1+G+R) 

PSRI 

Plant  

Senescence  

Reflectance Index 

(R-B)/RE 

RVI 
Ratio  

Vegetation Index 
NIR1/R 

SA Surface Albedo 

((Y+R)*0.35)/ 

2+(0.7* 

(NIR1+NIR2))/ 

2-0.69 

RR Red ratio 
(NIR1/R)*(G/R)* 

(NIR1/RE) 

Table 2. Description of remote sensing indices (RSIs) 

3.2.2 Masking: The WV-2/3 images contained clouds, 

shadows, and several artifacts. Because these pixels do not 

require classification, we created a mask for superfluous 

pixels. We used the I channel from the RGB-derived IHS data 

to mask shadows and clouds. Next, we used non-homogeneous 

feature difference (NHFD) in the RSIs to create a mask of 

artificial structures. All threshold values for masks used in this 

study are provided in Table 3. 

Summer Autumn 

Shadows Intensity < 0.04 Intensity < 0.0675 

Clouds 0.12 < Intensity 0.15 < Intensity 

Artificial 

structures 
NHFD < 0.45 NHFD < 0.45 

Table 3. Mask threshold values 
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3.2.3 Extraction: We extracted the means and standard 

deviations of 32 explanatory variables for all tree crowns. We 

did not extract explanatory variables from tree crowns that 

were completely masked. When some tree crown pixels were 

included in the mask, we extracted explanatory variables only 

from parts of the tree crown that were not masked. 

3.3 Classification 

We classified the delineated crowns into nine classes using 

WV-2 taken in summer. The nine classes were bare ground, 

Larix kaempferi, Cryptomeria japonica, Chamaecyparis 

obtusa, broadleaf trees, healthy pines, and pines damaged at 

slight, moderate, and heavy levels. A total of 6,523 training 

areas were created, and classification was then performed 

using the SVM model trained from these areas. Finally, only 

healthy pines and three levels of damaged pines were selected. 

We then repeated this method to classify healthy pines and 

three levels of damaged pines with WV-2 images, using WV-3 

taken in autumn. A total of 628 training areas were created, 

and classification was performed using the SVM model trained 

from these areas. 

4. RESULTS

4.1 Classification Accuracy 

Among the classification results, we discuss only healthy pines 

and damaged pines that were the subject of this research. 

Table 4 shows the explanation of abbreviations in 4th chapter. 

Abbreviation Name 

Hl Healthy 

Sl Slight 

Mo Moderate 

Hv Heavy 

Ua User accuracy 

Pa Producer accuracy 

Table 4. Abbreviations list 

4.1.1 Summer: Table 5 shows the confusion matrix for four 

classes, including healthy and damaged pines, from the trees 

classified into nine classes using WV-2 images. 

The accuracy of the classifications using the WV-2 images 

ranged from 86.3 to 100%, with an overall accuracy of 98.3%. 

Heavy damaged pines were the most accurate among the 

damaged pine trees. Moderate damaged pines were the least 

accurate among the damaged trees. The classification accuracy 

of healthy pines were 100% of user accuracy and 99.8% of 

producer accuracy, and the accuracy was the highest in these 4 

classes. 

Hl Sl Mo Hv Total Ua (%) 

Hl 1120 0 0 0 1120 100.0 

Sl 1 39 4 1 45 86.7 

Mo 1 3 82 9 95 86.3 

Hv 0 0 5 166 171 97.1 

Total 1122 42 91 176 1431 

Pa (%) 99.8 92.9 90.1 94.3 98.3 

Table 5. WorldView (WV)-2 confusion matrix 

4.1.2 Autumn: Table 6 shows the confusion matrix for the 

same classes obtained using WV-3 images. 

The accuracy of the classifications using the WV-3 images 

ranged from 40.4 to 95.4%, with an overall accuracy of 72%. 

Heavy damaged pines were the most accurate among the 

damaged pine trees. Slight damaged pines were the least 

accurate among the damaged trees. The classification accuracy 

of healthy pines were 95.4% of user accuracy and 84.2% of 

producer accuracy, and the accuracy was the highest in these 4 

classes. 

Hl Sl Mo Hv Total Ua (%) 

Hl 271 6 2 5 284 95.4 

Sl 29 46 21 18 114 40.4 

Mo 9 25 51 19 104 49.0 

Hv 13 16 13 84 126 66.7 

Total 322 93 87 126 628 

Pa (%) 84.2 49.5 58.6 66.7 72.0 

Table 6. WV-3 confusion matrix 

4.2 Difference Over Two Seasons 

Table 7 shows the comparison between healthy pines and three 

levels of damaged pines between summer and autumn.  

In this study, since the crown extracted using the same CHM 

data is used for classification, there is no change in the total 

amount of trees. 

The number of healthy pine trees decreased in autumn. On the 

other hand, the number of slight, moderate and heavy damaged 

pine trees increased in autumn. 

Number of trees 

Hl Sl Mo Hv Total 

Summer 211,6

43 

16,302 6,273 22,57

0 

256,7

88 

Autumn 172,1

56 

39,910 7,447 37,27

5 

256,7

88 

Table 7. Differences in numbers of trees in each damage class 

between two seasons 

5. CONCLUSIONS

We classified pines in a region affected to varying degrees by 

pine wilt disease based on a CHM derived from ALS data and 

explanatory variables from the original WV-2/3 bands, IHS, 

and RSIs. Using high-resolution satellite images taken during 

two seasons within the same year, we observed the variation in 

pine wilt damage in pine trees within the study area. The 

classification results obtained for summer were more accurate 

regardless of whether the images were taken in summer or 

autumn.  

Because the field survey data were not sufficiently verified for 

accuracy, we have only presented the confusion matrices. We 

used all explanatory variables in the model, and therefore did 

not select variables for their effectivity. We suggest that further 

studies will be able to improve on our methods. 
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