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ABSTRACT: 

Recognition of tree species and geospatial information of tree species composition is essential for forest management. In this study 

we test tree species recognition using hyperspectral imagery from VNIR and SWIR camera sensors in combination with 3D 

photogrammetric canopy surface model based on RGB camera stereo-imagery. An arboretum forest with a high number of tree 

species was used as a test area. The imagery was acquired from the test area using UAV-borne cameras. Hyperspectral imagery 

was calibrated for providing a radiometrically corrected reflectance mosaic, which was tested along with the original uncalibrated 

imagery. Alternative estimators were tested for predicting tree species and genus, as well as for selecting an optimal set of remote 

sensing features for this task. All tested estimators gave similar trend in the results: the calibrated reflectance values performed 

better in predicting tree species and genus compared to uncorrected hyperspectral pixel values. Furthermore, the combination of 

VNIR, SWIR and 3D features performed better than any of the data sets individually, with calibrated reflectances and original 

pixel values alike. The highest proportion of correctly classified trees was achieved using calibrated reflectance features from 

VNIR and SWIR imagery together with 3D point cloud features: 0.823 for tree species and 0.869 for tree genus. 

1. INTRODUCTION

Recognition of tree species and acquisition of geospatial 

information of tree species composition is essential in forest 

management, as well as in the management of other wooded 

habitats. In forest management, information of tree species 

dominance or species composition is needed for, e.g., the 

estimation of woody biomass and growing stock and the 

estimation of the monetary value of the forest (e.g. 

Laasasenaho, 1982; Repola, 2009, 2008). Furthermore, 

information of tree species is needed for designing appropriate 

silvicultural treatments for stands or individual trees and for 

forecasting future yield and cutting potential (e.g. Hynynen et 

al., 2005). For assessing non-timber forest resources such as 

biodiversity or mapping wildlife habitats knowledge of the tree 

species is equally essential (e.g. Fassnacht et al., 2016).  

Traditionally forest inventory methods based on the utilization 

of remote sensing data have used forest stands or sample plots 

as inventory units, when estimating forest variables such as the 

amount of biomass of volume of growing stock, as well as 

averaged variables such as stand age or height. However, stand 

level forest variables typically are an average or a sum from a 

set of trees, of which the stand or sample plot are composed, 

and certain amount of information is lost even when aiming at 

ecologically homogeneous inventory units. In the calculation 

forest inventory variables such as volume and biomass of the 

growing stock, tree level models are typically used nowadays 

(e.g. Laasasenaho, 1982; Repola, 2009, 2008). Very high 

resolution remote sensing data allows moving from stand level 

to the level of individual trees (e.g. Ørka et al., 2009), which 

has certain benefits, for example in precision forestry, forest 

managements planning, biomass estimation and modelling 

forest growth (Koch et al., 2006).  

Forest and tree species classification using multi- or 

hyperspectral imaging or laser scanning has been widely 

studied (Korpela et al., 2014; Leckie et al., 2005; Packalén et 

al., 2009). However, the data has mainly been captured from 

manned aircrafts or satellites, wherefore studies have been 

focusing more on forest or plot level. Laser scanning, both 

discrete and full-waveform, has been used to classify trees in 

boreal forests (Brandtberg et al., 2003; Holmgren and Persson, 

2004; Maltamo et al., 2004; Yu et al., 2014; Ørka et al., 2007). 

Most demanding task using passive imaging systems has 

always been in discriminating different conifers due to their 

spectral similarity. However, structural data from laser 

scanning has shown to be able to capture the structural 

differences of these species, such as the vertical extent of the 

leafy canopy (Yu et al., 2014). 

Individual trees have been detected using passive data mainly 

using image segmentation (e.g. Brandtberg and Walter, 1998; 

Wang et al., 2004), but the development of dense image 

matching methods and improving computing power have 

enabled the production of high resolution photogrammetric 

point clouds. Their ability to produce structural data from 

forest has been presented by e.g. Baltsavias et al., 2008; Haala 
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et al., 2010; St‐Onge et al., 2008. Photogrammetric point 

clouds produce accurate top-of-the-canopy information that 

enables the computation of Canopy Height Models (CHM) 

(e.g. Baltsavias et al., 2008) and thus detection of individual 

trees. However, the notable limitation of photogrammetric 

point clouds compared to laser scanning is that passive imaging 

does not have good penetration ability, especially with aerial 

data from manned aircrafts. Thus, laser scanning which can 

penetrate forest canopies deeper has been the main method to 

provide information on forest structure. Photogrammetric point 

clouds derived from data captured using manned aircrafts have 

been used but the spatial resolution is not usually accurate 

enough to produce good detection results. 

The use of UAVs in aerial imaging has enabled aerial 

measurements with very high spatial resolution and improving 

the resolution of photogrammetric point clouds from forest. 

The development of light-weight hyperspectral frame cameras 

has enabled measurement of high spectral resolution data from 

UAVs (Colomina and Molina, 2014). One of the recent 

innovations are hyperspectral cameras operating in the 2D 

frame format principle (Aasen et al., 2015; Honkavaara et al., 

2013; Mäkynen et al., 2011; Saari et al., 2011). These sensors 

give a possibility to very high spatial resolution hyperspectral 

images and 3D data analysis thus giving very detailed spectral 

information of tree canopies. 

Some studies have used data of UAV-borne sensors in 

individual tree detection with excellent results (e.g. Zarco-

Tejada et al., 2014). Tree species classification from UAV data 

has not been widely studied, especially with simultaneous 

individual tree detection. Näsi et al. (2015) used UAV-based 

hyperspectral data in individual tree scale to study damage 

caused by bark beetles. Previously, Nevalainen et al. (2017) 

have studied individual tree detection and species classification 

in boreal forest using UAV-borne photogrammetric point 

clouds and hyperspectral image mosaics. 

Novel hyperspectral imaging technology based on a variable air 

gap Fabry-Pérot interferometer (FPI) was used in this study. 

The first prototypes of the FPI-based cameras were operating in 

the visible to near-infrared spectral range (500-900 nm; VNIR) 

(Honkavaara et al., 2013; Mäkynen et al., 2011; Saari et al., 

2011). The FPI can be easily mounted on a small UAV 

together with RGB camera which enables the simultaneous 

hyperspectral imaging with high spatial resolution 

photogrammetric point cloud creation. 

The objective of this study is to investigate the use of high 

resolution photogrammetric point clouds together with two 

novel hyperspectral cameras in VNIR and SWIR spectral 

ranges in individual tree detection and classification in 

arboretum with large numbers of tree species. The importance 

of different spectral and structural features in tree species 

classification in complex environment will be investigated.  

2. MATERIALS AND METHODS

2.1 Study area and field data 

Mustila Arboretum located in the municipality of Kouvola in 

South-Eastern Finland (60°44′N, 26°25′E) was used as the 

study area. The area was selected for this study because it has 

exceptionally large variation of tree species, mainly originating 

from different parts of boreal and temperate zones of Northern 

hemisphere, nearly 100 conifer species and more than 200 

broad-leaved tree species have been planted there. The 

arboretum is over 100 years old, so a large number of full-

grown trees of various species occur in the area.  

The total size of the arboretum is approx. 100 ha, and for this 

study an area of approx. 50 ha was covered by hyperspectral 

imagery. The covered areas were selected on the basis of their 

tree species composition, specially targeting areas where trees 

compose homogeneous stands or tree groups, as well as tree 

species of silvicultural importance. Bushes, young trees and 

trees belonging to species that do not achieve full size at 

maturity due to poor adaptation to Finnish conditions were 

excluded from the study. Furthermore trees with canopies that 

were shadowed by or intermingled with other tree species were 

not included in the test material either. 47 test stands 

representing 26 different tree species and 14 tree genera were 

selected, delineated and examined in the field from the area 

covered by imagery. Test trees were mapped in the field using 

GPS and very high resolution RGB imagery acquired by UAV-

borne camera. GPS was used for positioning the trees in the 

orthorectified RGB mosaic. In total 673 tree crowns were 

delineated in the test stands. The delineated trees include a 

number of intermingled tree canopies (of same species) that 

cannot be discriminated from the images. The list of tree 

species represented among the test trees is presented in Table 

1.  

Tree species No. of trees 

Abies amabilis 9 

Abies balsamea 8 

Abies fraseri 11 

Abies koreana 27 

Abies mariesii 4 

Abies sachalinensis 17 

Abies sibirica 19 

Abies veitchii 9 

Acer platanoides 13 

Betula pendula 5 

Fraxinus pennsylvanica 40 

Larix kaempferi 16 

Picea abies 34 

Picea jezoensis 13 

Picea omorika 85 

Pinus peuce 65 

Pinus sylvestris 107 

Populus tremula 19 

Pseudotsuga menziesii 27 

Quercus robur 53 

Quercus rubra 43 

Thuja plicata 20 

Tilia cordata 4 

Tsuga heterophylla 9 

Tsuga mertensiana 11 
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Ulmus glabra 5 

total 673 

Table 1. Number of test trees of different species 
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2.2 Remote sensing data 

2.2.1 FPI hyperspectral cameras: Two novel FPI-based 

hyperspectral cameras were used in the study. One was 

operating in the visible and near-infrared spectral range 

(VNIR; 400 to 1000 nm) and another one operated in the 

shortwave infrared (SWIR) range (1100-1600 nm). The FPI 

technology is based on the fact that the wavelength of the light 

passing the FPI is a function of the interferometer air gap. By 

changing the air gap, it is possible to acquire a new set of 

wavelengths. The final spectral response is dependent on the 

light passing the FPI and the spectral characteristics of the 

detector. The spectral bands can be selected according to the 

requirements of the remote sensing task.  

The VNIR FPI-camera is the first snapshot hyperspectral 

camera that is able to cover the entire VNIR range of 400-1000 

nm. The camera was developed jointly by the VTT Technical 

Research Centre of Finland Ltd (VTT) and Senop Ltd. The 

camera has two RGB sensors with an electronic shutter, one 

for the visible range (400-640 nm) and one for the NIR range 

(640 - 1000 nm); the use of RGB sensors is the major 

difference to the commercial version which is equipped with 

two monochromatic sensors (de Oliveira et al., 2016). The 

image size can be selected between 1010 × 648 pixels and 

1010 × 1010 pixels with a pixel size of 5.5 μm. The frame rate 

is typically 30 frames/s with 15 ms exposure time for 1010 × 

648 pixel image size. A maximum of 36 spectral bands can be 

selected with ±1 nm spectral resolution. The camera is 

equipped with custom optics having a focal length of 9.0 mm 

and an f-number of approximately 2.8. The maximum field of 

view (FOV) is ±18.5° in the flight direction and same ±18.5° 

in the cross-flight direction. The camera weighs about 720 g 

without battery.  

The SWIR camera consists of the commercial InGaAs camera - 

the Xenics Bobcat-1.7-320, the imaging optics, the FPI 

module, control electronics, a battery, a GPS sensor and an 

irradiance sensor (Mannila et al., 2014). The Xenics Bobcat-

1.7-320 is an uncooled Indium Gallium Arsenide (InGaAs) 

camera, with a spectral band of 0.9-1.7 µm and 320 × 256 

pixels, and with a pixel size of 20 × 20 µm. The FPI, optics 

and electronics are designed and built at VTT. The focal length 

of the optics is 12.2 mm and the f-number is 3.2; the FOV is 

±13° in the flight direction, ±15.5° in the cross-flight direction, 

and ±20° at the format corner. The time between adjacent 

exposures is 10 ms plus exposure time; capturing single data 

cube with 32 bands and using 2 ms exposure time takes 0.384 

s. The mass of the spectral imager unit is approximately 1200

g.

2.2.2. Remote sensing data acquisition: The UAV platform 

was a hexacopter with Tarot 960 foldable frame (Figure 1) 

belonging to the Finnish Geospatial Research Institute (FGI). 

The autopilot was Pixhawk equipped with Arducopter 3.15 

firmware. Payload of the system is 3-4 kg and flight time 15-30 

min depending on payload, battery and conditions. 

The FPI cameras described above were the main payload in the 

UAV. The spectral settings of the VNIR and SWIR cameras 

were selected so that the spectral range was covered quite 

evenly (Table 2). A total of 32 spectral bands were collected by 

the SWIR camera in the spectral range 1100-1600 nm with the 

full width of half maximum (FWHM) ranging from 20 to 30 

nm and with an exposure time of 2 ms. With the VNIR camera, 

36 bands were collected on a spectral range of 409 nm to 973 

nm with a FWHM of 10-15 nm and an exposure time of 30 ms. 

In addition, we used also RGB camera (Samsung NX 300) for 

capturing high spatial resolution stereoscopic images that were 

used for producing 3D object model using dense image 

matching techniques. 

The ground station was composed of reference panels with a 

size of 1 m × 1 m and nominal reflectance of 0.03, 0.09 and 

0.50 for determining the reflectance transformation, and 

equipment for irradiance measurements. We also deployed in 

each area 4-8 ground control points (GCPs) measured with 

GPS and targeted with circular targets with a diameter of 30 

cm.  

The flight campaign was carried out in September 2015 in four 

areas of interest. The flying speed was 4 m/s. The flying height 

was 120 m at the starting position, but due to the terrain height 

variations and the canopy heights, the distances from the object 

were 70 m at smallest. Depending on the UAV to object 

distance (70-120 m) the GSDs were 0.015 - 0.03 m, 0.04 - 0.08 

m, and 0.11 - 0.20 m for the RGB, VNIR and SWIR cameras, 

respectively (Table 2). In all the blocks, the distance between 

flight lines was 30 m. 

Figure 1. The UAV and the instrumentation (RGG+VNIR HS 

sensors) used in the UAV measurements 

VNIR L0 (nm): 408.69, 419.50, 429.94, 440.71, 449.62, 

459.44, 470.30, 478.47, 490.00, 499.97, 507.77, 522.60, 

540.87, 555.49, 570.47, 583.08, 598.31, 613.71, 625.01, 

636.32, 644.10, 646.78, 656.88, 670.45, 699.03, 722.39, 

745.66, 769.86, 799.25, 823.37, 847.30, 871.17, 895.28, 

925.42, 949.45, 973.20 

VNIR FWHM (nm): 12.00, 14.58, 13.64, 14.12, 12.41, 13.05, 

12.66, 12.42, 12.10, 13.52, 12.62, 12.87, 12.72, 12.50, 12.24, 

12.34, 11.57, 11.98, 11.45, 10.26, 11.61, 14.31, 11.10, 13.97, 

13.79, 13.49, 13.62, 13.20, 12.95, 12.97, 12.66, 13.18, 12.35, 

12.74, 12.59, 10.11 

SWIR L0 (nm): 1154.10, 1168.58, 1183.68, 1199.22, 

1214.28, 1228.18, 1245.71, 1261.22, 1281.65, 1298.55, 

1312.93, 1330.66, 1347.22, 1363.18, 1378.69, 1396.72, 

1408.07, 1426.26, 1438.52, 1452.60, 1466.99, 1479.35, 

1491.84, 1503.81, 1516.66, 1529.30, 1541.57, 1553.25, 

1565.48, 1575.53, 1581.87, 1578.26 

SWIR FWHM (nm): 27.04, 26.98, 26.48, 26.05, 26.73, 
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26.98, 26.36, 26.30, 26.17, 26.54, 26.60, 25.80, 25.80, 25.62, 

26.54, 27.35, 26.85, 28.15, 27.22, 27.10, 28.58, 27.65, 27.90, 

27.22, 28.83, 28.52, 28.89, 29.75, 30.43, 27.47, 20.49, 20.06 

Table 2. Spectral settings of the FPI VNIR and SWIR cameras. 

L0: central wavelength; FWHM: full width at half maximum 
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2.3 Processing of image data 

Objectives of the data processing were to generate dense point 

clouds using the RGB image blocks and to calculate image 

mosaics of the hyperspectral data sets. The processing chain 

used in this study is based on the methods developed by 

Honkavaara et al. (2013, 2016) and Nevalainen et al. (2017), 

In the following sections, the geometric and radiometric  

processing steps are described. The procedure for classification 

is presented in Section 2.4. 

2.3.1 Geometric processing: Geometric processing 

determined the interior and exterior orientations of the images 

(IOP and EOP) and created sparse and dense point clouds. 

Because the calculating orientation of each band of the FPI 

data cube in the bundle block adjustment would be 

computationally heavy (68 bands in this study), we have 

developed an approach that determines the orientations of 

selected reference bands using the block adjustment and 

optimizes orientations of remaining bands to these reference 

bands (Honkavaara et al., 2016). Agisoft PhotoScan 

Professional (www.agisoft.com) software was used to 

determine the IOPs and EOPs of the reference bands and to 

create dense and sparse point clouds. Four VNIR reference 

bands and the RGB images were processed simultaneously; in 

the case of SWIR data, five SWIR bands were processed. The 

data set was georeferenced using 4-8 GCPs in each area. A 

dense point cloud was calculated using only RGB images to 

acquire highest density and resolution. Finally, orientations of 

the bands that were not processed by PhotoScan were 

optimized to fit to reference bands. 

The block adjustments showed accurate results with re-

projection errors of approximately 0.2–0.5 pixels. The point 

densities were approximately 320 points per m2 for every 

block.  

2.3.2 Radiometric processing: The objective of the 

radiometric correction was to provide spectrally high quality 

reflectance mosaics. The radiometric modelling approach 

developed at the FGI included the sensor corrections, the 

atmospheric correction, correction for the illumination changes 

and other nonuniformities, and the normalization of 

illumination and viewing direction related nonuniformities 

(Honkavaara et al., 2013). 

The sensor corrections for the FPI images included spectral 

correction, photon response nonuniformity correction (PRNU) 

and dark signal correction (Honkavaara et al., 2013; Mäkynen 

et al., 2011).  

The reflectance transformation from uncalibrated digital 

numbers of pixels (DN) to reflectance was carried out using 

the empirical line method (Smith and Milton, 1999) with the 

aid of the reflectance panels in the area. For the SWIR images, 

all reference panels were used (nominal reflectance 0.03, 0.10 

and 0.5). For the VNIR images, the brightest panel was not 

used because it was saturated in most of the bands. Other 

radiometric corrections were not performed because the 

imaging conditions were uniform during the data capture. 

The orthophoto mosaics were calculated with a GSD of 20 cm 

using the FGI’s radiometric block adjustment and mosaicking 

software (Honkavaara et al., 2013). Eight bands in the SWIR 

data (range 1360-1470 nm) were useless because of low level 

of signal due to the strong water absorption in this spectral 

range. Reflectance mosaics were radiometrically uniform as 

expected because the illumination conditions were stable. 

2.4 Extraction of remote sensing features 

Remote sensing features were extracted from delineated 

polygons corresponding to the canopies of test trees in the 

study area. The CHM was applied in the extraction process to 

ensure that the spectral features of the hyperspectral VNIR and 

SWIR imagery were extracted from the crowns of the test trees 

and to exclude the influence of the ground vegetation and 

shrubs to the image features. Pixels whose altitude was less 

than 5 m from the terrain were excluded from the calculation 

of the spectral features. 

The hyperspectral features were extracted from the following 

data sets: 

 36 VNIR and 24 SWIR spectral bands with both DN and

reflectance values

 The first 9 and 12 principal components calculated from

VNIR and SWIR DN bands respectively

 The first 17 and 15 principal components calculated from

VNIR and SWIR reflectance bands respectively

The following spectral features were extracted from the data 

sets listed above: 

 Spectral averages (AVG)

 Standard deviations (STD)

 Spectral averages (AVG50) of the brightest 50 % of pixel

values

 Spectral averages (AVG25) of the brightest 25 % of pixel

values

The following features were extracted from photogrammetric 

(XYZ format) 3D point data (Næsset, 2004; Packalen and 

Maltamo, 2006, 2008): 

 H where percentages of vegetation points (0%, 5%, 10%,

20%, …, 80%, 85%,90%, 95%, 100%) were accumulated [m]

(e.g. H0, H05,...,H95, H100)

 Canopy densities corresponding to the proportions points

above fraction no. 0, 1, …, 9 to total number of points (D0, D1,

…, D9)

 Proportion of vegetation points having H greater or equal

to corresponding percentile of H (i.e. P20 is the proportion of

points having H>= H20) (%)

H = height above ground; vegetation point = point with H > = 2 

m, the range of H was divided into 10 fractions (0, 1, 2,…, 9) 

of equal distance 

2.5 Tree species estimation and validation 

2.5.1 K nearest neighbors and genetic algorithm: In the k 

nearest neighbors method (k-nn) the Euclidean distances 

between the test trees were calculated in the n-dimensional 

feature space, where n stands for the number of remote sensing 

features used. The tree species and genus were estimated for 

each test tree as the statistical mode of the nearest neighbors. 

Different values of k were tested in the estimation procedure. 

The selection of the features (as well as the optimal value of k) 

was performed with a genetic algorithm (GA) -based approach, 

implemented in the R language by means of the Genalg 
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package (Willighagen and Ballings 2015; R Development Core 

Team 2016). This approach searches for the subset of predictor 

variables based on criteria defined by the user. Here the 

evaluation function of the genetic algorithm was employed to 

maximize the percentage of correct classifications in cross-

validating the tree species classifications; i.e. each test tree 

was classified independently of its’ observed value, and the 

predicted class was compared to the observed class. 

The accuracy of the tree species estimation was tested by 

calculating error matrices (e.g. Campbell and Wynne, 1987) of 

the tested classifications. The error matrix presents the error of 

omission (observations belonging to a certain category and 

erroneously classified in another category), error of 

commission (observations erroneously classified in a certain 

category while belonging to another), proportion of 

observations classified correctly and kappa (κ) value. 

2.5.2 Random Forest method: As an alternative to the 

approach based on k-nn+GA, Random Forest (RF) method was 

tested in tree species classification. RF is based on growing 

multiple decision trees. A decision tree is used to create a 

model that predicts the value of a target variable based on a set 

of input variables. Target variables are tree species and genera, 

input variables are the features extracted from the 

hyperspectral and 3D data sets. Each internal node in a tree 

corresponds to a test on one of the features. Each branch 

represents a series of tests and at the end of each branch the 

terminal node represents the outcome of the tests, a value for 

the target variable. The tree is voting for the mode of all the 

values at the terminal nodes. In case of equal amounts of 

values the final estimate is selected randomly (Stephens, 

2014). 

Single decision trees are however prone to overfitting but by 

growing an adequate number of trees this disadvantage can be 

eliminated or minimized. In order to be able to grow different 

decision trees some source of randomness is required. The first 

is to randomly subsample the training data. The second is to 

subset the amount of features used for each node in each 

decision tree (Stephens, 2014). 

Data analysis was carried out using the RF package in R 

statistical software. After several test runs the default amount 

of 500 trees to be grown for each data set (see section 2.4) was 

found to be suitable. At each node a random set of features 

were used. The optimal sample size of features for each data 

set was selected by test runs with sample sizes varying from 10 

to 70 with an increment of 5. Subsampling of the training data 

was done with replacement and the size of subsample equaled 

the size of the training data. 100 runs were carried out with 

each data set and the best preforming model was selected. The 

fitness of the model was assessed by the overall accuracy of the 

target variables (tree species, genera). 

3. RESULTS

Of the tested feature selection methods, k-nn+GA gave 

consistently better results than the RF method in selecting 

feature sets for predicting tree species and genus. GA + k-nn 

performed better with all tested data combinations: SWIR, 

VNIR. Compared to RF, k-nn+GA resulted in 4-7% higher 

proportions of correct classifications for tree species and 2-5% 

for tree genus. 

In general, using calibrated reflectance features resulted in 

higher proportion of correct classifications than using 

uncalibrated DN bands of hyperspectral imagery. When using 

VNIR bands the improvement with calibrated reflectances was 

1% for tree species and 3% compared to uncalibrated DNs. 

With SWIR bands improvement was 5% and 4% for species 

and genus respectively. When using both VNIR and SWIR the 

improvement was 2% for both species and genus prediction. 

Of the tested data combinations with reflectance bands, SWIR 

bands + 3D features were the poorest performing data set, 

proportion of correct classifications was 0.767 for tree species 

and 0.817 for genus. Using VNIR bands instead of SWIR 

generally improved the accuracy of tree species estimation, the 

proportion of correct classifications was 0.792 for tree species 

and 0.850 for genus. However, the combination containing 

SWIR+VNIR reflectance bands with 3D features resulted in 

better tree species estimation than any other data set; the 

proportion of correct classifications was 0.823 for tree species 

and 0.869 for genus. 

In the tested classifications the kappa (κ) value was between 

0.71 - 0.81 for tree species, and 0.75 - 0.84 for genus, which 

indicates either substantial or almost perfect agreement 

(Campbell and Wynne, 1987). 

The accuracy of classifications based on the tested data 

combinations (using k-nn+GA as estimator) is presented in 

Figure 2 (results per tree species) and Figure 3 (results per tree 

genus). Furthermore, the full confusion matrix of tree genus 

classification using k-nn+GA estimator and data combination 

VNIR+SWIR+3D is presented in Appendix, presenting the 

classification in each genus class, including the  user’s and 

producer’s accuracy for the classes. 

Figure 2. Results of tree species classification (kappa + 

proportion of correct predictions) 
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Figure 3. Results of tree genus classification (kappa + 

proportion of correct predictions) 

4. DISCUSSION

In Finland, the operational forest inventory method for 

providing information for forest management in based on 

airborne laser scanning and digital photography. The list of 

forest variables specified for forest management data includes 

the volumes per tree species strata (pine, spruce and 

broadleaved trees), and the general weakness of the method is 

considered to be its’ ability to predict the proportions of these 

strata accurately (e.g. Packalén and Maltamo 2006, Tuominen 

et al. 2014).   

The results of this study showed that combination of 

hyperspectral imagery and photogrammetric 3D point cloud 

data is very promising method for tree species recognition. In 

this study we used high resolution imaging from low flying 

altitude using UAV-based sensors, and tested species and 

genus classification at individual tree level. Currently, this 

method is not operationally feasible remote sensing method for 

forest management purposes. However, a sensor package 

covering similar band combinations could be applied also for 

large area forest inventories using area-based estimation 

method (i.e. estimating forest characteristics at forest stand or 

plot level).  

Inclusion of 3D information from point cloud data improved 

the tree species recognition, despite the high radiometric 

resolution (and high number of bands) of the VNIR+SWIR 

imagery. In operational forest inventories the significance of 

3D data is even higher, since there are typically other 

estimated variables of interest, such as volume of growing 

stock/biomass, stand mean diameter and mean/dominant 

height, where 3D data typically performs better than spectral 

image information (e.g Tuominen et al. 2017).  

The combination of hyperspectral bands and 3D point cloud 

features, possibly even supplemented by textural features or 

multi-band transformations result in very high number of 

potential remote sensing features. Estimation or classification 

task in such a hyper-dimensional feature space differs greatly 

from traditional Landsat satellite image or conventional aerial 

image–based classification in complexity, and dealing with 

hyper-dimensional feature space requires appropriate tools for 

finding an optimal set of features for the estimation or 

classification task, such as those tested in this study.  

When using spectral information from aerial imagery acquired 

under changing solar illumination conditions, it is logical that 

calibrated imagery performs better than uncalibrated imagery, 

and although the effect of image calibration was as expected, 

the difference in results was relatively small. This may be due 

to the fact that the point cloud data requiring no calibration 

was among the tested feature sets. It is presumable, that 3D 

point data is significant in recognizing canopy shape and thus, 

in distinguishing trees of different species and especially 

genus. In further studies, the influence of point cloud data 

should examined by testing classifications with and without it. 
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APPENDIX. 

Confusion matrix of tree genus classification (k-nn + GA feature selection, reflectance features) 

GENUS Abies Acer Betula Fraxinus Larix Picea Pinus Populus Pseudots. Quercus Thuja Tilia Tsuga Ulmus Total

Producer's 

accuracy

Abies 88 0 0 0 0 5 6 0 1 0 2 0 1 1 104 0.846

Acer 0 10 0 0 0 0 0 0 0 3 0 0 0 0 13 0.769

Betula 0 0 2 0 0 0 0 0 0 3 0 0 0 0 5 0.400

Fraxinus 0 0 0 34 0 1 0 0 0 5 0 0 0 0 40 0.850

Larix 0 0 0 0 13 0 1 0 1 1 0 0 0 0 16 0.813

Picea 4 0 0 2 0 115 8 0 2 1 0 0 0 0 132 0.871

Pinus 1 0 0 0 0 4 166 1 0 0 0 0 0 0 172 0.965

Populus 0 1 0 0 0 0 1 12 3 2 0 0 0 0 19 0.632

Pseudotsuga 5 0 0 0 1 2 0 1 18 0 0 0 0 0 27 0.667

Quercus 0 1 0 6 0 0 0 0 0 88 0 1 0 0 96 0.917

Thuja 1 0 0 0 0 0 0 0 0 0 19 0 0 0 20 0.950

Tilia 0 0 0 1 1 0 0 0 0 2 0 0 0 0 4 0.000

Tsuga 3 0 0 0 0 0 0 0 0 0 1 0 16 0 20 0.800

Ulmus 0 0 0 0 0 0 1 0 0 0 0 0 0 4 5 0.800

Total 102 12 2 43 15 127 183 14 25 105 22 1 17 5 673 0.734

User's accuracy 0.863 0.833 0.000 0.791 0.867 0.906 0.907 0.857 0.720 0.838 0.864 0.000 0.941 0.800

Proportion of correct 0.869 Kappa 0.844
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