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ABSTRACT: 

A novel algorithm for forest road identification and extraction was developed. The algorithm utilized Laplacian of Gaussian (LoG) 

filter and slope calculation on high resolution multispectral imagery and LiDAR data respectively to extract both primary roa d and 

secondary road segments in the forest area. The proposed method used road shape feature to extract the road segments, which have 

been further processed as objects with orientation preserved. The road network was generated after post processing with tensor 

voting. The proposed method was tested on Hearst forest, located in central Ontario, Canada. Based on visual examination against 

manually digitized roads, the majority of roads from the test area have been identified and extracted from the process.  

* Corresponding author

1. INTRODUCTION

The characterization of forest roads is important for forest 

management and wildlife habitat mapping. Forest roads are 

usually generated by manual interpretation of high spatial 

resolution optical imagery. This method is time-consuming and 

labour intensive. A number of studies were carried out to 

automatically extract roads from remotely sensed data (mainly 

passive optical imagery), most of them were focused on extract 

road centerline from the urban area using object based 

classification or edge detection focused morphological 

methods. (Shi et al., 2014) (Beck et al., 2015) The 

classification methods utilized the spectral signature of the 

road segment to separate it from other objects.  Song and Civco 

used support vector machine (SVM) to classify the imagery 

and further detect road networks. (Song and Civco, 2004) Yuan 

et al. proposed a multistage process based on robabilistic 

SVMs and salient features to extract road networks from 

satellite imagery. (Yuan et al., 2011) Huang and Zhang 

proposed the detection of road centerlines from high-resolution 

images by integrating multiscale structural features and SVM. 

(Huang and Zhang, 2009) One the other hand, the edge 

detection focused approached utilize the road as line feature 

where the shape feature was used to distinguish it from the 

background. In this aspect, Shi and Zhu proposed a line 

segment match rule to extract urban road networks from 

morphological processing. (Shi and Zhu, 2002) Chaudhuri et 

al. proposed a semi-automated road detection method with the 

directional morphological enhancement and segmentation. 

(Chaudhuri et al.,2012) The existing methods were based on 

the facts that roads are linear features with edges and have 

different spectral signatures from surrounding objects. Such 

approaches may work well with major roads built with 

concrete or pavement, but fail to detect roads with vegetation 

coverage or under tree canopies shadows. (Coops and Bater, 

2009) Moreover, the approaches using passive optical imagery 

which lack of elevation information was unable to separate 

lifted roads from non-lifted ones. Such separation is important 

especially for wildlife habitat mapping, as lifted roads 

representing different ecology with more herbaceous. (Fahrign 

and Rytwinski, 2009) The development of airborne LiDAR 

(Light Detection And Ranging) technology provides good 

opportunity to improve forest roads identification due to its 

ability to capture the vertical structures of surface objects 

complementary to the spectral information from passive optical 

imagery.  

In this study, we exploited the integration of LiDAR and 

passive optical imagery to improve the extraction of forest 

roads. To do so, we developed a knowledge-based method to 

progressively extract roads with different levels of details. This 

approach was tested on Hearst Forest, Ontario Canada and the 

results were visually validated against manually digitized 

roads. 

2. STUDY AREA

The study area (49° 52'30'' N, 84°35'30''W) is located near the 

town of Hearst, Central Ontario, Canada. This study area falls 

within the boreal mixed wood region and covers approximately 

1.23 million ha; 1.00 million ha of which is a productive forest. 

The major cover types in this study area include water bodies, 

forests, roads, and low vegetation. The optical imagery 

acquired using a Leica ADS-40 in the summer of 2007 during 

leaf-on condition that has four spectral bands (blue, green, red 

and near infrared) with a spatial resolution of 0.4m by 0.4m. 

LiDAR data were collected using an Optech ALS50 sensor 
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mounted in a Cessna 310 aircraft with average 1.677 pulses 

per square meter. 

Figure 1: The optical imagery of study site displayed in false 

colour composite with the near-infrared band displayed as red, 

red as green and green as blue. 

3. METHODOLOGY

In this study, two types of roads have been identified and 

extracted. The primary road is defined as wide and paved roads 

with ditches on both sides, which is also been marked as a 

lifted road. The secondary road is defined as straight and flat 

road with full/partial vegetation coverage.  

The developed method included the following steps: (1) the 

extraction of the road candidates; (2) the detection of primary 

roads; and (3) the detection of secondary and tertiary roads. In 

the following, these steps are described one by one in details. 

3.1 The extraction of the road candidate 

In terms of identifying all potential road segments, customized 

Laplacian of Gaussian (LoG) filter was employed. 

Traditionally, a three-dimensional LoG filter was generated 

with same x and y variance to form a shape of Mexican hat for 

blobs/tree crowns detection. (Jing et al., 2012) However, with 

different x and y variance, elongated ellipsoids can be 

generated as a narrow stripe shape to represent the spectral 

shape of the road. Before the selection of the matching 

templates, a median filter with 3 x 3 window size was 

employed to remove the shadows between trees along the side 

of the roads.  

To identify the road segments, a training sample was employed 

to serve as the template for performing the image matching. 

Typically, a part of a straight road with a clear view is a good 

choice for such purpose. A customized LoG filter that has the 

shape best fits road training sample in the study area was 

generated, as shown in Figure 2. It worth mention that 

normally the spectral shape of the roads has high values in the 

middle and low values on the side (shape of Gaussian) as 

pavement has higher reflectance than the surroundings. 

However, in this study, the sunlit angle is low that makes the 

road covered by shadows of trees on the side. Therefore, LoG 

template was employed instead of a Gaussian template. In 

addition, to locate the roads with a different direction, LoG 

filter was designed to be rotated at user controlled angles to 

find roads that extended to all directions. At each window 

location, the cross correlation coefficient was computed and the 

resulting response map is shown in Figure 3. 

Figure 2: Customized LoG filter at 45 degrees with a 30 by 30 

window size  

Figure 3: Correlation coefficient response map generated from 

the correlation between the rotated LoG and the gray scaled 

road image of the near infrared, red and blue band with the 

color from red to blue indicated the correlation from high to 

low. 

In the correlation coefficient map shown in Figure 3, the color 

shaded red to blue indicates the variation of the correlation 

coefficient decreasing from 1 to 0. A correlation coefficient 

value close to 1 indicates a good match between the template 

and the moving window in the test site, while the coefficient 

value close to 0 indicates non-match. Generally, a threshold 

value of 0.7 is chosen and if the correlation coefficient exceeds 

that value, the area is assumed to match with the template. 

(Wolf and DeWitt, 2000) Therefore, the road segments are 

located within the orange to red area in the correlation 

coefficient map.  

The template matching process was performed at each angle 

individually and then merged together when filter at all angles 

have been employed. Since each process only identifies line 

features at a certain angle, the overlap only happened at a part 

of the result segment, such as road junctions. Therefore, no 

optimal selection filter was needed. 
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3.2  The detection of primary road 

As primary roads are defined as lifted roads with ditches on 

both sides, height information was required to identify the 

elevated road edges. Therefore, LiDAR DEM was employed to 

detect such roads, as the slope of the DEM was calculated. To 

be more specific, a plane to the z-values of a 3 x 3 

neighborhood was fitted around the center pixel, and the slope 

value of this plane is calculated using the average maximum 

technique. (Burrough, and McDonell, 1998) It was 

calculated as the rates of change of the surface in the horizontal 

(dz/dx) and vertical (dz/dy) directions from the center pixel, 

the equation is shown in the following: 

22 )()(
dy

dz

dx

dz
ATANSlope  (1) 

As slope value indicates a variation on the terrain, the primary 

road was located through ditches identification (area with 

higher slope than neighbours).  A threshold (determined from 

training samples) was set to extract the road edges. Resulting 

candidates form the layer of primary road segments.  

For all the primary road candidates, they were overlapped with 

the road segments generated from the LoG matching process to 

get the primary road map. Different from other studies find the 

road locations by intersecting the pixels, this research used an 

objected based process to topologically find the road segments 

and also create a result in continues line features rather than 

image pixels.  First, bounding boxes and contour lines were 

created for both road segment and primary road candidates, as 

shown in Figure 4. This step treats each segment as an 

individual object rather than a group of pixels. Second, all the 

bounding boxes from those two images were overlapped 

together to topologically comparing the locations. Road 

segment was tagged if one primary road candidate falls 

completely in its contour area, and the process run through all 

the primary road candidates. Last, all tagged road segments 

were output, and the contours were simplified to form the 

vector primary road map.  

Figure 4.  Bounding box and contour lines of road segments 

with each of the tree crowns is indicated by a unique color 

tone, and the background is indicated as the black area. 

3.3 Detection of secondary and tertiary roads 

After the primary roads were found, additional work was done 

to select secondary and tertiary roads from LoG matching 

generated road segments. As the matching processing 

identified object based on its shape, result contained features 

that have the road-like shape but not the road. To eliminate 

such false alarm, iso cluster classification was employed to 

analyze the spectral signatures of each segment. The iso cluster 

is an iterative clustering procedure that uses the minimum 

Euclidean distance as the criteria for assigning each candidate 

pixel to a cluster. At each iteration, samples are assigned to 

existing cluster centers and new means are recalculated for 

every class. (Richards, and Richards, 1999).  All road 

segments were classified into two classes, pixels have the same 

spectral signature as the primary roads are marked as roads, 

and exported as the final road map.  

3.4 Post Processing 

After final road segments were located, post processing was 

performed to connect the road segments and remove the non-

road features. To connect the road segments into continues 

road feature, tensor voting was employed. (Medioni et al., 

2000) 

Tensor voting was introduced and used as a perceptual 

grouping framework in computer vision. In a two dimensional 

space, a point x can be encoded as a second-order symmetric 

tensor T and is defined as,  

 (2) 

where  ≥  ≥ 0 are eigenvalues,  

and , , are the eigenvectors corresponding to ,and . 

By applying the spectrum theorem, the tensor T in Eq. (2) can 

be expressed as a linear combination of three basis tensors 

(ball, plate, and stick) as in eq.3.   

(3) 

where describes a stick (surface) with associated saliency 

( ) and normal orientation ,  

and  describes a plate (curve) with associated 

saliency  and no orientation preference.  

As a tensorial representation can capture the geometric 

information for multiple feature types (straight line or curve) 

and a saliency, or likelihood, associated with each feature type 

passing through a point, and the hypothesis does not need to be 

set in advance, it was used to connect discontinued road 

segments. 

Also, as water creeks are present in this study site, the edges of 

the creeks were falsely identified as roads. To remove those 

features, the Ontario water map was employed. A thin buffer 

zone was created based on the water shape line features, and 

then those segments that overlap with the water features were 

removed. 
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4. RESULTS AND DISCUSSION

4.1 Forest road detection result 

To test the advanced LoG matching method developed in this 

study, two test areas were selected from the study area. One 

has the size of 625 by 625 meters, referred to as Test Area # 1 

and the other is 1024 by 1024 meters, referred to as Test Area 

#2. 

With the first test area, 30 pixels by 30 pixels moving window 

was used to compare the LoG with all possible window 

locations within the optical imagery red band, where the roads 

have the most distinct boundary from the nearby vegetations. 

To find road segments at all directions, six rotation angles 

ranging from 0 to 180 were selected. The result of forest road 

segments that generated from LoG matching is shown in Figure 

5(a) below.  

Visual evaluation of Figure 5(a) shows that most of the roads 

have been correctly identified, especially for the primary roads 

that are wide and have distinct boundary from the 

surroundings. Secondary and territory roads that pass through 

the woods were successfully identified as well. This 

demonstrates the advance of the proposed method, as others 

often unable to detect such roads. However, the process failed 

to identify all the roads from the open area, i.e. roads passing 

bare soil. The reason accounting for the unsatisfactory result is 

that the LoG matching process is based on the assumption that 

road surface is covered by nearby tree shadows, which create a 

valley like spectral shape, while the roads in the open area 

have the opposite spectral shape. Since no template can detect 

mountains and valleys at the same time, future researches will 

work on detecting these two types of feature separately, and 

intelligently integrate them together.  

In terms of primary road extraction, threshold DEM slope 

result is shown in Figure 5(c). As slope was calculated pixel by 

pixel, the result road candidates are isolated and do not 

represent the actual feature of the road. Therefore, those road 

candidates were used as markers to locate the road segments 

are primary roads. After the topological overlapping process, 

only primary road segments are selected, and form the vector 

primary road map. Although results show improvements as 

roads are in continues features, it has a drawback that the 

process highly depends on the extraction of road segments from 

LoG matching. As demonstrated in the upper right of Figure 

5(c) a primary road was identified from DEM slope, but no 

road segments were extracted in that area, such road did not 

appear in the final road map.    

After the primary roads are extracted, Iso cluster classification 

was employed to eliminate the commission error by separating 

the segments into the road and non-road features. Among all 

road segments, there are miss identified segments as the edge 

of the forest and passes in the middle of the forest. The result 

is shown in Figure 5(b). Classification result shows that the 

paths within the forest and along the side of the roads were 

successfully classified as non-road segment and can be 

eliminated, while one territory road on the lower left corner 

was falsely classified as a non-road segment. The reason 

account for that is that territory road is passing through the 

forest and covered by lower vegetations, such as bushes, and 

this makes its spectral signature different from other roads 

whose surface are pavements and dirt.  

With the road segments filtered out from the Iso Cluster 

classification, the edge of the water creeks was removed as 

shown in Figure 5(d), and road network was generated from 

tensor voting from post processing. Final road map overlaid 

with the red band from the original image is shown in Figure 

5(e). By visually compared with manually digitized roads 

shown in Figure 5(f), it can be seen that most of the roads were 

successfully extracted, while some secondary/territory roads or 

part of them are missing. As this study area is challenging due 

to a large number of roads that are partially occluded, which 

create a non-uniformed spectral shape that makes it difficult 

for template matching and resulting incomplete extraction of 

those territory roads. 

(a) 

(b) 
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(c) 

(d) 

(e) 

(f) 

Figure 5: Road extraction result by proposed LoG matching 

method (a) Road segments generated from initial LoG 

matching with each segment indicated by blue lines, and the 

background is a red band of optical imagery. (b) Iso Cluster 

classification result with road class indicated in green lines and 

non-road class indicated in blue lines. (c)Primary road 

locations generating from the threshold of DEM slope with 

road candidates colored in yellow, and the background is gray 

scaled DEM. (d) Final primary road map resulting from 

topologically overlapped with road segments, with road 

polygons colored in yellow, and the background is gray scaled 

DEM. (e) Final forest road detection result after post 

processing. Each road segment is indicated by red lines, and 

the background is a red band of optical imagery. (f) Manually 

digitized road. Each road is on yellow lines, and the 

background is the false color optical imagery with the near-

infrared band displayed as red, red as green and green as blue  

Another larger test area was selected to further validate the 

advanced LoG matching method developed in this study. The 

color composite of the optical imagery over the test area is 

shown in Figure 6(a). This area was chosen, because it has 

both primary road and secondary road present, and some of the 

roads are failed to be identified from an early study. Since the 

road in this area has high reflectance in the middle and low 

reflectance at the edge, the image was invert before LoG 

matching process. The road extraction result generated by the 

developed method is shown in Figure 6(b). It can be seen that 

all the roads were correctly extracted. Similar to the result 

from test area #1, false identified roads are from the edge of 

the forest and plantation in the upper left area.  
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(a) 

(b) 

Figure 6: Algorithm validation through additional test area. (a) 

The false colored optical imagery of the test area with the near-

infrared band displayed as red, red as green and green as blue. 

(b) The road segments generated from the proposed algorithm

are coloured in blue and overlaid on the optical image red

band.

4.2 Sensitivity analysis 

To demonstrate how the shape of the LoG template affects road 

identification result, three different templates were tested. 

Templates and their corresponding matching results are shown 

in Figure 7(a)-(f). It can be seen that with template width goes 

from narrow to wide, the number of road segments identified 

decreased. However, with the narrowed template, false 

identified objects appeared more in the result. There is always 

a trade-off between the number of subjects identified and the 

commission error. The more road segments to be identified, the 

more noise will come with it. To balance between the result 

and its commission error, the template was chosen based on 

the training road sample.  

Figure 7: Effects of template shape on LoG matching result. (a) 

LoG filter with x-direction std = 1.75. (b) LoG filter with x-

direction std =2.25. (c) LoG filter with x-direction std =2.75. 

(d) Road segments resulting from LoG matching with the

template (a). (e) Road segments resulting from LoG matching

with the template (b). (f) Road segments resulting from LoG

matching with the template (c).

Besides the shape of the template, window size also influences 

the LoG matching result. For this purpose, three different 

templates were tested. Templates and their corresponding 

matching results are shown in Figure 8(a)-(f). With a small 

window that includes part of the template was unable to 

identify most of the roads. On the other hand, when the 

window size covers greater than the template, the number of 

road segments detected does not increased but more noise 

appeared. In this study, a window size that best fit the template 

was used to find the most roads while keeping the noise 

minimum.  

Figure 8: Effects of window size on LoG matching result. (a) 

LoG filter with window size = 15. (b) LoG filter with window 

size =25. (c) LoG filter with window size =40. (d) Road 

segments resulting from LoG matching with the template (a). 

(e) Road segments resulting from LoG matching with the

template (b). (f) Road segments resulting from LoG matching

with the template (c).

5. CONCLUSION

In this paper, an advanced LoG matching method has been 

presented. While other researches identify the road focusing on 

its spectral features, this study use knowledge based template 

matching method that utilized both spectral and shape features. 

(a) (b) (c) 

(d) (e) (f) 

(a) (b) (c) 

(d) (e) (f) 
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Based on visual examination against manually digitized roads, 

almost all the roads have been identified. The preliminary 

results show that all the primary roads could be accurately 

detected. In addition, most “secondary roads” could be detected 

using LoG filter; but detection of “trails” that has low 

vegetation covered was proved to be difficult. 
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