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ABSTRACT: 

This study attempted to classify three coniferous and ten broadleaved tree species by combining airborne laser scanning (ALS) data 

and multispectral images. The study area, located in Nagano, central Japan, is within the broadleaved forests of the Afan 

Woodland area. A total of 235 trees were surveyed in 2016, and we recorded the species, DBH, and tree height. The geographical 

position of each tree was collected using a Global Navigation Satellite System (GNSS) device. Tree crowns were manually 

detected using GNSS position data, field photographs, true-color orthoimages with three bands (red-green-blue, RGB), 3D point 

clouds, and a canopy height model derived from ALS data. Then a total of 69 features, including 27 image-based and 42 point-

based features, were extracted from the RGB images and the ALS data to classify tree species. Finally, the detected tree crowns 

were classified into two classes for the first level (coniferous and broadleaved trees), four classes for the second level (Pinus 

densiflora, Larix kaempferi, Cryptomeria japonica, and broadleaved trees), and 13 classes for the third level (three coniferous and 

ten broadleaved species), using the 27 image-based features, 42 point-based features, all 69 features, and the best combination of 

features identified using a neighborhood component analysis algorithm, respectively. The overall classification accuracies reached 

90% at the first and second levels but less than 60% at the third level. The classifications using the best combinations of features 

had higher accuracies than those using the image-based and point-based features and the combination of all of the 69 features. 

* Corresponding author

1. INTRODUCTION

Japan has rich forest resources, with a total area of 

approximately 25.08 million ha and a total volume of 

approximately 49.01 million m3 in 2012. Of these, broadleaved 

forests account for approximately 47% of the total forested area 

(Learning Museum of the Forest and Forestry, 2017). Forest 

plantations were abandoned in some harvested forest areas 

following decreases in timber prices and as land owners aged 

and retired (Katoh et al., 2009). In recent years, rapid infection 

by pests such as pine wilt disease, which is caused by the pine 

wood nematode (Bursaphelenchus xylophilus) and the 

Japanese pine sawyer (Monochamus alternatus), has damaged 

several Japanese pine forests. Consequently, it may be 

necessary to clear-cut large areas dominated by infested trees 

and to curtail coniferous plantation programs. Broadleaved 

trees grow well in these clear-cut areas. Therefore, areas of 

secondary broadleaved forests will increase in the next few 

decades. Consequently, the management of broadleaved forests 

has become an urgent issue in Japan. Broadleaved trees have 

higher economic value than conifers because of their high 

timber hardness and use for high-value-added products, such as 

furniture. Currently, harvest activities in Japan are focused on 

planted conifer forests. More accurate information on the 

condition of broadleaved forest resources is required for 

forestry officers and landowners to improve timber production 

of broadleaved trees. In addition, coniferous forests planted 

with a single tree species lead to ecological issues, such as pest 

disease and soil degradation. Recently, the change from pure 

conifer forests to broadleaved forests has received increasing 

attention from the Japanese government (NARO, 2016). 

Precise tree species classification using high-density airborne 

laser scanning (ALS) data is a key research topic for automated 

forest inventories. During the last decade, many researchers 

have contributed to the study of tree species classification 

using ALS data (Ørka et al., 2009; Vaughn et al., 2012). Most 

studies have been limited to geometric or statistical features 

(Heinzel and Koch, 2011). Several point-based features have 

been developed to describe the structural properties of crowns 

of individual trees, such as crown shape and vertical foliage 

distribution (Li et al., 2013; Lin and Hyyppä, 2016). However, 

most of these studies found that it was difficult to classify 

mixed forests accurately based only on point clouds (Ørka et 

al., 2009; Heinzel and Koch, 2011; Yu et al., 2014). To our 

knowledge, few studies have focused on broadleaved tree 

species identification at the individual tree level. Consequently, 

this study explored the classification of broadleaved trees in a 
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secondary forest with a large species mixture by combining 

ALS and multispectral data. 

 

 

2. MATERIALS AND METHODS 

2.1 Study Area 

The study area, located in Northern Nagano Prefecture, central 

Japan, is private land that belongs to the Afan Woodland Trust. 

The center of the test site was located at 36°46'00"N, 

138°10'30"E and has an altitude of 800 m above sea level. The 

study area was covered by natural broadleaved forest until the 

1920s. Then, most of the natural trees were cut and conifers 

were planted from the 1920s to the 1950s. Over the next 30 

years, these plantations were abandoned after the forest was 

harvested, until the Afan Woodland Trust was established in 

1986. Currently, it is an ecological forest and has become a 

well-known educational site that is popular with Japanese 

elementary and middle school students. Several endangered 

species occur in the Afan Woodland. The forests are dominated 

by ten broadleaved species [Alnus japonica (Aj), Ulmus 

japonica (Uj), Magnolia kobus (Mk), Quercus serrata (Qs), 

Cornus controversa (Cc), Quercus crispula (Qc), Juglans 

mandshurica (Jm), Cerasus jamasakura (Cj), Betula 

platyphylla (Bp), and Fraxinus mandshurica (Fm)] and three 

coniferous species [Pinus densiflora (Pd), Larix kaempferi 

(Lk), and Cryptomeria japonica (Cr)]. 

 

2.2 Field Measurements 

Field measurements were made in September and December 

2016. In total, 235 dominant trees were surveyed, and the 

species, DBH (to the nearest 0.1 cm), and tree height were 

recorded (Figure 1). Each tree was tagged with a permanent 

label. The geographical position of each tree was determined in 

December 2016 with a Global Navigation Satellite System 

(GNSS) device (Trimble Geo7x, USA), and the locations were 

post-processed using data recorded simultaneously at the local 

base stations. The location accuracy of 99% of the trees was 

less than 1 meter after post-processing. Several photographs of 

each tree were taken for manual individual tree detection. The 

184 tallest trees were used to assess the accuracy of tree 

species classification. 

 

2.3 Airborne Laser Data and True-Color Images 

ALS data were collected on 4 November 2012 using a Trimble 

Harrier 68i system (Leica Geosystems AG, Heerbrugg, 

Switzerland). The system was configured to record up to three 

echoes per pulse, i.e., the first or only, intermediate, and last. 

The laser scanner used a wavelength of 1,550 nm. In this 

study, the point cloud data were acquired at a flight altitude of 

500 m above ground level and at a speed of 90 km/h. The 

scanner was operated at a pulse rate of 200 kHz (i.e., 200,000 

points per second), with a field of view (FOV) of 60° and a 

beam divergence of 0.5 mrad. The point density ranged from 

30 to 208 points per m2 (over the forested area). In addition, 

true-color (red, green, blue; RGB) images with three bands 

(red, green, and blue) and a resolution of 50 cm were acquired 

at the same time as the laser data from a TAC P65 sensor using 

color mode. 

 

 

Figure 1. Field measurement results 

 

2.4 Data Analyses 

The research flow chart in Figure 2 provides an overview of 

the methods. 

 

 

Figure 2. Research flow chart 

 

2.4.1 Delineation of tree crowns: Tree crowns were 

detected manually using the GNSS position data, field photos, 

orthoimages (RGB), canopy height model (CHM), and three-

dimensional (3D) point clouds (Figure 3). 
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Figure 3. Manual individual tree detection 

 

2.4.2 Feature extraction: Sixty-nine features were 

extracted from the RGB orthoimages and ALS data for tree 

species classification, including 27 image-based (Table 1) and 

42 point-based (Table 2) features. Based on the algorithm 

presented in Holmgren and Persson (2004), an approach was 

developed to detect tree crown points automatically (Figure 4). 

 

Features Description 

R_mean 
The mean value of the red band within each 

tree crown 

R_stdev 
The standard deviation of the red band within 

each tree crown 

G_mean 
The mean value of the green band within each 

tree crown 

G_stdev 
The standard deviation of the green band 

within each tree crown 

B_mean 
The mean value of the blue band within each 

tree crown 

B_stdev 
The standard deviation of the blue band within 

each tree crown 

NG_mean 

The mean Normalized Difference Vegetation 

Index (NDVI) derived from the green and red 

bands within each tree crown 

NG_stdev 

The standard deviation of the NDVI derived 

from the green and red bands within each tree 

crown 

NB_mean 
The mean NDVI derived from the blue and red 

bands within each tree crown 

NB_stdev 
The standard deviation of the NDVI derived 

from the blue and red bands within each tree 

crown 

RG_mean 

The mean Ratio Vegetation Index (RVI) 

derived from the green and red bands within 

each tree crown 

RG_stdev 

The standard deviation of the RVI derived 

from the green and red bands within each tree 

crown 

RB_mean 
The mean RVI derived from the blue and red 

bands within each tree crown 

RB_stdev 

The standard deviation of the RVI derived 

from the blue and red bands within each tree 

crown 

I_mean 
The mean laser intensity within each tree 

crown 

I_stdev 
The standard deviation of the laser intensity 

within each tree crown 

NI_mean 
The mean NDVI derived from the laser 

intensity and red band within each tree crown 

NI_stdev 

The standard deviation of the NDVI derived 

from the laser intensity and red band within 

each tree crown 

RI_mean 
The mean RVI derived from the laser intensity 

and red band within each tree crown 

RI_stdev 

The standard deviation of the RVI derived 

from the laser intensity and red band within 

each tree crown 

SL_mean 
The mean slope value of the CHM within each 

tree crown 

SL_stdev 
The standard deviation of the slope value 

within each tree crown 

CV_mean 
The mean curvature value of the CHM within 

each tree crown 

CV_stdev 
The standard deviation of the curvature value 

within each tree crown 

SA_mean 
The mean surface area of the CHM within 

each tree crown 

SA_stdev 
The standard deviation of the surface area 

within each tree crown 

Shape 

Index 

The ratio of the area to the perimeter of each 

tree crown 

Table 1. Definitions of the 27 image-based features 

 

Features Description 

RHmean Relative mean height of all points to tree height 

RHstdev 
Relative standard deviation of all points to tree 

height 

RH10-90 
Relative height of 10-90% points at 10% 

intervals to tree height 

PP10-90 
Percentage of points below 10-90% of total 

height with a 10% increment 

RMD 
Relative mean distance of first and last returns 

to tree height 

PF Proportion of first returns 

PI Proportion of intermediate returns 

PL Proportion of last returns 

PG Proportion of ground returns 

IA_max Max intensity of all returns 

IA_mean Mean intensity of all returns 

IA_stdev 
The standard deviation of the intensity of all 

returns 

IF_max Max intensity of first returns 

IF_mean Mean intensity of first returns 
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IF_stdev 
The standard deviation of the intensity of first 

returns 

II_max Max intensity of intermediate returns 

II_mean Mean intensity of intermediate returns 

II_stdev 
The standard deviation of the intensity of 

intermediate returns 

IL_max Max intensity of last returns 

IL_mean Mean intensity of last returns 

IL_stdev 
The standard deviation of the intensity of last 

returns 

PC Proportion of crown returns 

RCR Ratio of crown returns in 2013 to 2012 

RCL Relative crown length to tree height 

CPV 
The volume of the crown point clouds within 

each tree 

CPD 
The point density of the crown points within 

each tree 

Table 2. Definitions of the 42 point-based features 

 

 
(a) Point cloud of the tree 313 

 
(b) Tree crown points are highlighted in red 

Figure 4. Example of tree crown point extraction 

 

2.4.3 Identification of the best combination of features 

for species classification: In this study, the best combination 

of features for tree species classification was identified using 

the neighborhood component analysis (NCA) algorithm 

presented in Yang et al. (2012). The NCA is a non-parametric, 

embedded method for selecting features with the goal of 

maximizing the prediction accuracy of classification 

algorithms. It performs feature selection with regularization to 

learn feature weights to minimize an objective function that 

measures the average leave-one-out classification loss over the 

training data. 

 

2.4.4 Tree species classification: The manually detected 

tree crowns were classified into two classes at the first level 

[coniferous and broadleaved trees], four classes at the second 

level [Pinus densiflora (Pd), Larix kaempferi (Lk), 

Cryptomeria japonica (Cr), and broadleaved trees], and 13 

classes at the third level [three coniferous species and ten 

broadleaved species] using the 27 image-based features, 42 

point-based features, all 69 features, and the best combination 

of features identified using the NCA algorithm. A support 

vector machines (SVM) classifier that we previously identified 

a powerful classifier (Deng et al., 2016) was used for tree 

species classification. The predictive power of the models 

using different features was verified by five-fold cross-

validations. 

 

 

3. RESULTS 

3.1 Tree Species Classifications Using Different Features 

Figure 5 shows the results of the tree species classification at 

the three levels described in Section 2.4.3 using the 27 image-

based (IB) and 42 point-based (PB) features, all 69 features 

(ALL), and the best combination of features (BC) that was 

identified using the NCA method. The four datasets were 

transformed using a principal component analysis (PCA), 

which explained 99% of the variance. Then, they were also 

used for tree species classification at the three levels, 

respectively. The classification accuracy using different 

features reached 90% at the first and second levels. However, 

the accuracy was less than 52% at the third level (13 species 

were classified). The classifications using all of the features 

had greater accuracy than those using the image-based and 

point-based features. The classification using the best 

combination of features had the greatest accuracy within the 

four datasets. However, the classifications using a PCA 

transformation had lower accuracy than those using the original 

features. 

 

 

Figure 5. Tree species classifications using different features 

with principal component analysis transformation 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W3, 2017 
Frontiers in Spectral imaging and 3D Technologies for Geospatial Solutions, 25–27 October 2017, Jyväskylä, Finland

This contribution has been peer-reviewed.   
https://doi.org/10.5194/isprs-archives-XLII-3-W3-33-2017 | © Authors 2017. CC BY 4.0 License.

 
36



 

 

We also assessed the effect of neighboring trees on the 

classification. A total of 140 trees that were easily separated 

from the neighboring trees were classified at the three levels 

for a comparison with the classifications of all trees (184). The 

results showed that the classification of the easily detected 

trees had greater accuracy than those of all trees at the three 

levels (Figure 6). The accuracy was improved markedly at the 

third level, at which 13 tree species were classified. The 

results included in Figures 5 and 6 indicate that the NCA is an 

effective method for feature selection in tree species 

classification. 

 

 

Figure 6. Comparison of the tree species classifications of all 

trees with easily detected trees 

 

3.2 Identification of the Best Combination of Features for 

Tree Species Classification 

In the NCA, the feature weights in different combinations were 

calculated by iteration, and the features that contributed little 

to the classification had very small weights. In this study, the 

features were selected if their weights exceeded 0.02 if the 

maximum weight within the combination was less than 1, or 

0.02 multiplied by the maximum weight if the maximum 

weight was greater than 1. Based on the above conditions, 19, 

17, and 29 features were identified in the classifications of all 

184 field trees at the three levels, respectively. For the easily 

detected trees, there were 14, 16, and 32 features that 

contributed to tree species classification at the three levels, 

respectively. Table 3 lists the selected features sorted by their 

weights in descending order. 

 

Classifications 
Selected features sorted by weight 

in descending order 

All trees at the first 

level 

IF_mean, SL_mean, NI_stdev, 

IL_stdev, RMD, IA_stdev, R_stdev, 

G_mean, PP80, RCR, I_stdev, PF, PI, 

SL_stdev, PG, B_mean, II_mean, 

IA_max, RCL 

All trees at the 

second level 

IF_mean, RCR, NI_stdev, I_stdev, 

SL_mean, PI, IL_stdev, IA_stdev, 

RMD, PP80, R_stdev, PF, NB_stdev, 

CV_mean, B_mean, IA_max, 

RHstdev 

All trees at the third 

level 

RH50, II_stdev, I_mean, PI, PG, 

NG_mean, R_mean, RHstdev, 

G_stdev, IF_mean, RCL, SL_mean, 

IA_stdev, NB_mean, RCR, SL_stdev, 

PF, NB_stdev, B_mean, IL_stdev, 

PP60, R_stdev, PP10, G_mean, 

CV_mean, PP40, PP50, IF_stdev, 

RH20 

Trees easily 

detected at the first 

level 

SL_mean, IL_stdev, IF_mean, RMD, 

PG, NB_stdev, R_stdev, SL_stdev, 

PP70, G_mean, NI_stdev, PP80, 

I_stdev, Shape Index 

Trees easily 

detected at the 

second level 

SL_mean, NI_stdev, RCR, IF_mean, 

SL_stdev, IL_stdev, RMD, R_stdev, 

I_stdev, RCL, PF, II_stdev, G_mean, 

CV_stdev, PG, NB_stdev 

Trees easily 

detected at the third 

level 

RH30, PI, I_mean, PG, NG_mean, 

II_stdev, G_stdev, B_mean, RHstdev, 

R_stdev, RCR, RCL, II_mean, PP10, 

NB_mean, SL_stdev, IF_mean, 

IA_stdev, PP60, IF_stdev, SL_mean, 

RH50, SA_stdev, IL_stdev, 

CV_mean, RMD, NB_stdev, PF, 

CV_stdev, G_mean, IL_mean, II_max 

Table 3. Results of feature selection 

 

The results indicate that three image-based features (B_mean, 

R_stdev, and SL_mean) and six point-based features 

(IA_stdev, IF_mean, IL_stdev, PF, PI, and RCR) contributed to 

the classifications of all field trees at the three levels. In 

addition, I_stdev, NI_stdev, IA_max, PP80, and RMD 

contributed to the classification of all field trees at the first and 

second levels, and the other features identified in the 

classifications at the first and second levels also contributed to 

the classification at the third level. In comparison, the 

classifications of the easily detected trees identified five image-

based features (G_mean, R_stdev, NB_stdev, SL_mean, and 

SL_stdev) and four point-based features (IF_mean, IL_stdev, 

PG, and RMD) at the three levels classifications. I_stdev and 

NI_stdev both contributed to the classifications at the first and 

second levels. Although other features identified in the 

classification at the second level contributed to the 

classification at the third level, PP70, PP80, and Shape Index, 

which were selected out in the classification at the first level, 

made no contribution to the classification at the third level. In 

addition, 25 common features were identified in the 

classifications of all field trees and easily detected trees at the 

third level. 

 

 

4. CONCLUSIONS 

This study classified three coniferous and ten broadleaved tree 

species at different levels using a support vector machine 

classifier by combining ALS data and multispectral images. 

The best combination of features for tree species classification 

was identified using the NCA algorithm. The predictive power 

of the models using different features was verified by five-fold 

cross-validation using the field data. The overall classification 

accuracy reached 93.5% and 94.6% at the first and second 

levels, respectively, using the best combination of features 

identified by the NCA method, but less than 58% at the third 

level, at which 13 tree species were classified. The 

classifications using the best combinations of features were 

more accurate than those using the image-based and point-

based features and the combination of all 69 features, 

indicating that the NCA is an effective method for feature 

selection in tree species classification. The classifications using 

PCA transformations were less accurate than those using the 

original features. Consequently, PCA transformation is not 
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recommended. To improve classification at the third level, a 

WorldView-2 image with eight bands acquired in October 

2014 will be used for tree species classification in our next 

study. 
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