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ABSTRACT:

Optical remote sensing has potential to overcome the limitations of point estimations of lake water quality by providing spatial and
temporal information. In open ocean waters the optical properties are dominated by phytoplankton density, while the relationship
between color and the constituents is more complicated in inland waters varying regionally and seasonally. Concerning the difficulties
relating to comprehensive modeling of complex inland and coastal waters, the alternative approach is considered in this paper: the
raw digital numbers (DN) recorded using aerial remote hyperspectral sensing are used without corrections and derived by means of
regression modeling to predict Chlorophyll a (Chl-a) concentrations using in situ reference measurements. The target of this study
is to estimate which number of local reference measurements is adequate for producing reliable statistical model to predict Chl-a
concentration in complex lake water ecosystem. Based on the data collected from boreal lake Lohjanjärvi, the effect of standard
deviation of Chl-a concentration of reference samples and their local clustering on predictability of model increases when number of
reference samples or bands used as model variables decreases. However, the 2 or 3 band models are beneficial and more cost efficient
when compared to 5 or 7 band models when the standard deviation of Chl-a concentration of reference samples is over certain level.
The simple empirical approach combining remote sensing and traditional sampling may be feasible for regional and seasonal retrieval
of Chl-a concentration distributions in complex ecosystems, where the comprehensive models are difficult or even impossible to derive.

1. INTRODUCTION

The simple single-variable algorithms consisting bands in the blue
to green region are appropriate for Chlorophyl a (Chl-a) retrieval
for vast areas of oceanic Case-1 waters. These models fails in
predicting the optically multicomponent Case-2 water systems,
such as coastal and inland waters, in which the Chl-a, colored
dissolved organic matter (CDOM) and total suspended matter
(TSM) may vary independently of each other. In addition, the
relationship between color and the constituents of Case-2 water
may vary regionally and seasonally and there may be other af-
fecting factors as reflectance from bottom in shallow water areas.
The atmospheric correction procedures for inland water remote
sensing are also challenging when compared to oceanic measure-
ments. The climate changes may also change dynamic interac-
tions between components and algorithms based on data of the
past decades might turn out to be inaccurate in the near future.
During last decades the investigation of optically complex Case-2
water bodies have received increasing attention. Besides the sim-
ple algorithms utilizing combinations of radiance or reflectance
of few bands to estimate various lake water properties, the ad-
vanced neural network, semi-analytical and bio-optical modeling
inversion methods have been developed to predict inherent opti-
cal properties (IOPs), (see, e.g. (IOCCG, 2006), (Palmer et al.,
2015)).

Ocean color sensors carried by satellites have usually limited num-
ber of wavelength bands and therefore the methods that utilize
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full hyperspectral data are mainly developed using airborne and
hand-held sensors. Full measured reflectance spectrum is com-
pared to the libraries of modeled spectra for simultaneous deter-
mining of Chl-a, CDOM and suspended matter concentrations
e.g. in (Kutser et al., 2001). The algorithms for determination
the inland optical components are usually validated only a lim-
ited range of lakes; global scale studies are needed for more ro-
bust and comprehensive models ((Bukata, 2013), (Palmer et al.,
2015)). In this study, oppositely to attempt for comprehensive
model, the goal is to study the applicability and reliability of use
of raw digital numbers (DNs) recorded by means of aerial remote
hyperspectral sensing to estimate Chl-a concentration in lake wa-
ter. Representativity of limited number of local measurements
for calibration of a simple statistical regression model, applied to
whole area of a single lake, is evaluated.

2. MATERIALS AND METHODS

2.1 Study area and measurements

The remote sensing investigations of boreal lake Lohjanjärvi were
executed with novel framing hyperspectral imager, which uses
piezo-actuated Fabry-Perot interferometer (FPI) (Mäkynen et al.,
2012). First prototypes of these imagers have been used in sev-
eral different applications for environmental remote sensing (see,
e.g, (Pölönen et al., 2012), (Honkavaara et al., 2013), (Näsi et
al., 2015), (Honkavaara et al., 2016)) and to detect skin cancer
(Pölönen, 2013). Newest version of spectral imagers using FPI
are commercially available (http://www.rikola.fi). In this study,
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Bands RMSE (µg/l) r−2 r
2 2.42 0.719 0.848
3 2.17 0.773 0.879
5 2.13 0.784 0.885
7 2.11 0.788 0.888
36 2.01 0.815 0.903

Table 1. Statistics of the regression models: Root mean square
error (RMSE), correlation coefficient r and coefficient of

determination r2.

the prototype 2012b was used to capture VIS/NIR spectral range
images comprised from 36 wavelength bands from 500 nm to
875 nm. FPI images were captured from a manned single engine
aircraft Cessna 172 Reims Rocket with an FPI camera using a
flight height of about 2025 m above the mean sea level, provid-
ing a GSD of 2 m. Block consisted of a total of 14 flight strips
and 622 images. Forward overlaps were 75% and side overlaps
were 53% in average. In situ reference variables of water quality
were measured from a moving research vessel and seven water
samples were taken for laboratory analysis for the calibration of
the field data. The parameters measured were typical descriptors
of eutrophication or otherwise important key elements of aquatic
communities and health (Chl-a, BGA, NO23-N, Turbidity, TOC,
NO23-N). Reference values of Chl-a consists of 650 measure-
ments from different basins of Lohjanjärvi (A = 89 km2) with
sampling distance varying for 5 to 15 meter depending on vessel
speed. Detailed description of measuring procedure is presented
in (Erkkilä et al., 2017).

2.2 Data and algorithms

The range, mean and standard deviation of 650 measured Chl-a
reference values are 1.93 - 26.06 µ g/l, 11.46 µg/l and 4.56 µg/l,
respectively. Multiple linear regression was used in deriving the
model for predicting concentration of Chl-a by combination of
DNs of different wavelengths measured by aerial hyperspectral
imaging. The relation between measured Chl-a and regression
estimated using all available 36 bands is presented in Figure 1.
The combinations of 2, 3, 5 or 7 bands were selected using max-
imum correlation with Chl-a concentration as an criterion; peak
wavelengths for the best 2 bands combination are 693 and 850
nm, for 3 bands: 567, 682 and 850 nm, for 5 bands : 540, 567,
636, 682 and 850 nm and for 7 bands: 540, 567, 636, 662, 682,
733 and 850 nm. The basic statistics of the regression models
applied to total 650 reference samples are presented in Table 1.
Different numbers (8, 10, 12, 15, 20 and 30) of randomly selected
Chl-a concentration samples were used as calibration subset in
deriving the regression models and then models are applied to
the rest of measurements used as validation subset. 50000 ran-
domly selected combinations without duplicates were taken for
each number of reference Chl-a samples. The standard deviation
of Chl-a concentrations and average minimum distance of loca-
tion of each selected combinations were calculated. The average
minimum distance is derived by determining minimum distance
of each member of one selection from other members belonging
to the same selection and then taking an average of these min-
imum distances of members. Two dimensional probability and
cumulative probability histograms were determined for present-
ing and comparison of results.

Figure 1. Linear regression estimate of Chlorophyll a
concentration when DNs of all bands are used as variables.

3. RESULTS

50000 numbers of 12 randomly selected reference Chl-a obser-
vations have been used for deriving the regression model using
the DN of 5 bands as an variables. The measured Chl-a concen-
tration at all other of 650 reference location were considered as
validation subset. The correlation coefficient r (Figures 2 and 4)
is determined between the validation subset and Chl-a concentra-
tion predicted by derived model at corresponding locations. Four
examples out of 50000 tests are illustrated in Figure 3. The r of
all 50000 tests are presented as a function of standard deviation
of Chl-a concentration of each 12 random samples by a scatter
plot and two dimensional histogram in Figure 2. Probability his-
togram and cumulative probability histogram with respect to r are
presented in Figure 4. Only standard deviation bins, in which the
sum of counts is over 30, are plotted. The cumulative histogram
is presented for RMSE and correlation coefficient and RMSE are
also presented as a function of average minimum distance param-
eter describing the clustering of locations of 12 reference sam-
ples. Correlation coefficients and errors at different cumulative
probability levels, 0.01, 0.05, 0.1, 0.2 and 0.5, are presented in
Figure 6. The higher standard deviation improves the correlation
coefficient but does not ensure low RMSE; see an example pre-
sented in Figure 3 (bottom left), where the correlation is fairly
high (r = 0.77), but there is bias in the slope of predicted values,
which explains the high error. Neither the high standard deviation
nor large average minimum distance guarantee good predictabil-
ity of the model with 99 % reliability level (probability = 0.01),
when 12 reference samples are used in deriving the model with
DN of 5 bands. However the situation improves and is stabilized
significantly with reliability level 95 % if the standard deviation
of reference values is adequately high.

The effect of number of reference values are presented by cumu-
lative probability histograms in Figure 7 and by correlation coef-
ficient and RMSE at reliability level 95 % as a function of stan-
dard deviation and average minimum distance in Figure 8. The r
and RMSE approach toward extreme values presented in Table 1
when number of reference samples increases. The 30 reference
samples provide good predictability of model even independently
of the standard deviation and average minimum distance levels
studied. Decrease in range of standard deviation levels caused by
the higher number of reference samples may also have an effect
on the observed independence.
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The effect of number of independent variables on the r and RMSE
is presented in Figures 9 and 10. With 30 reference locations, 2
and 3 band models approach their extreme values for r and RMSE
presented in Table 1. They also require lower amount of refer-
ence measurements to produce reliable model, but the result is
more sensitive to standard deviation and clustering of reference
samples than when DN of 5 or 7 bands are used. Probability to
reach at least r = 0.7 is presented in Figure 11. For 5 bands model
the r at least 0.7 is almost certain when 30 reference measures
are used. If 12 reference samples are used, the probability is sig-
nificantly dependent on standard deviation of reference values.
With 2 and 3 band models the r at least 0.7 and RMSE lower than
4 µg/l are achieved almost certainly if standard deviation of 12
reference measurements is roughly over 4.5 µg/l (Figures 11 and
12).

Figure 2. Correlation coefficient between Chl-a estimates of
linear regression model and in-situ Chl-a measurements. Model

is derived using 12 randomly selected reference Chl-a
measurements (50000 random selections) and DN of five bands

as variables. Result is presented as a function of standard
deviation of Chl-a concentration of 12 reference samples. Top:

scatter plot. Bottom: 2D histogram.

4. DISCUSSION AND CONCLUSION

In most studied cases the variation of correlations and errors de-
pends only slightly on the clustering or variability of the reference
measurements. The lower number of reference measurements
or bands used in model increases this dependency. The effect
is highest when correlation coefficient is studied as a function
of standard deviation of reference measurements, while RMSE
does not express equally notable trend. As can be expected, the
higher number of observations (reference samples) improve the

Figure 3. Four examples of comparison of reference Chl-a
concentrations and estimates derived by regression model based
on Chl-a measurements from 12 random locations (red circles
and St.dev. values) are presented. The model is applied to the
rest 638 Chl-a samples (black crosses, r and RMSE values).

Figure 4. Probability histogram (top) and cumulative probability
histogram (bottom) derived from data presented in Figure 1. The
standard deviation bins for which the sum of counts is below 30

are rejected from probability histograms.

model predictability. The more prominent observation was, that
the higher number of input variables (wavelength bands) in model
would require significantly more reference measurements to ap-
proach the same predictability as model with lower number of
input variables. Roughly, the 7 bands model requires 30 refer-
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Figure 5. Cumulative probability histograms derived using 5
bands and 12 randomly selected reference samples. The

standard deviation bins (top) or average minimum distance bins
(middle and bottom) for which the sum of counts is below 30 are

rejected from probability histograms.

ence samples to achieve same correlation coefficient with same
confidence level as 2 or 3 band model reach with 12 reference
measurements if their standard deviation of Chl-a concentrations
is at least 4.5 µg/l. The observations based on the empirical data
of this study implies that better cost efficiency can be attained
with 2 or 3 bands usage instead of 5 or 7 bands, when the amount
of reference samples are wished to minimized. The more com-
prehensive multi-criteria optimization could be used to estimate a
more accurate cost minimum. It would also be interesting to test
the same approach with other lake data (different lake or same
lake at different seasons) to see if the trends and optima would

be the same; other optically active water quality parameters can
be studied as well. The simple empirical approach combining re-
mote sensing and traditional sampling methods may prove to be
feasible when the goal is accurate long term monitoring of com-
plex ecosystems.
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Erkkilä, A.-L., Lindfors, A., Pölönen, I., Honkavaara, E., Nurmi-
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T. and Holopainen, M., 2015. Using uav-based photogrammetry
and hyperspectral imaging for mapping bark beetle damage at
tree-level. Remote Sensing 7(11), pp. 15467–15493.

Palmer, S. C., Kutser, T. and Hunter, P. D., 2015. Remote sens-
ing of inland waters: Challenges, progress and future directions.
Remote Sensing of Environment 157, pp. 1 – 8.

Pölönen, I., 2013. Discovering knowledge in various applications
with a novel hyperspectral imager. Jyväskylä studies in comput-
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Figure 6. Correlation coefficient r (top and second from bottom) 
and root mean square error (RMSE) (second from top and 

bottom) for different probability levels. All figues: 12 randomly 
selected reference samples, 50000 random selection and 5 bands.

Figure 7. Cumulative probability histograms derived using 5
bands and 8 (top), 12 (middle) and 30 (bottom) randomly

selected reference samples. The standard deviation bins for
which the sum of counts is below 30 are rejected from

probability histograms.
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Figure 8. Correlation coefficient r (top and second from bottom 
figures) and RMSE (second from top and bottom figures) for 

different number of randomly selected measurements. All
figures: 50000 random selection, probability level 0.05 and 5

bands.

Figure 9. Correlation coefficient r (top and second from bottom 
figures) and root mean square error (RMSE) (second from top 

and bottom figures) for different number of wavelength bands as 
variables. All figures: 12 randomly selected reference samples, 

50000 random selection and probability level 0.05.
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Figure 10. Correlation coefficient r for different number of
wavelength bands as variables. 30 (top) and 8 (bottom)

randomly selected reference samples. Both figures: 50000
random selection and probability level 0.05.

Figure 11. Probability that the correlation coefficient r > 0.7 for
different number of randomly selected samples (top and middle

figures) and number of wavelength bands used as variables
(bottom). 5 bands used for top and middle figures and 12

randomly selected reference measurements for bottom figure
results.
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Figure 12. The probability that the RMSE < 4.0 is presented for
different number of wavelength bands used as variables.12

randomly selected reference measurements.
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