
SOFTWARE FRAMEWORK FOR HYPERSPECTRAL DATA EXPLORATION AND
PROCESSING IN MATLAB

Matti A. Eskelinen

University of Jyväskylä, Faculty of Information Technology, Jyväskylä, Finland - matti.a.eskelinen@student.jyu.fi

Commission III, WG III/4

KEY WORDS: Software, Hyperspectral Imaging, Data Exploration, MATLAB

ABSTRACT:

This paper presents a user introduction and a general overview of the MATLAB software package hsicube developed by the author for
simplifying the data manipulation and visualization tasks often encountered in hyperspectral analysis work, and the design principles
and software development methods used by the author. The framework implements methods for slicing, masking, visualization and
application of existing functions to hyperspectral data cubes without the need to use explicit indexing or reshaping, as well as enabling
expressive syntax for combining these operations on the command line for highly efficient data analysis workflows. It also includes
utilities for interfacing with existing file reader scripts for easy access to files using the framework. The hsicube framework is released
as open source to promote the free use and peer review of the code and enable collaborative development.

1. INTRODUCTION

Hyperspectral imaging data presents a challenge for data explo-
ration due to it’s high dimensionality, size and very application-
specific features of interest. Programming algorithms and pro-
cessing pipelines for analysis and visualization of hyperspectral
data requires the programmer to keep track of multiple variables
besides the data, such as wavelength information and regions of
interest. Care must be taken when translating between data ex-
ploration and batch processing workflows to ensure correct re-
sults, and again when visualizing results of the batch processing
to prevent erroneous presentations. Automation of the steps of
such workflows — while highly desirable — is often a complex
programming task due to the management of many datasets of
different dimensions along with their metadata. Consider for ex-
ample the following workflow:

1. Read a hyperspectral cube and its metadata from disk,

2. Extract data for region(s) of interest,

3. Select data in a specific wavelength region(s),

4. Compare select spectra visually with reference data,

5. Apply a model on the selected data and collect the results,

6. Visualize the results overlaid on the original dataset.

Steps 1 and 5 are cases that existing MATLAB libraries such as
ENVIreader/writer (Totir and Howat, 2010) and Hyperspec-

tral ToolBox (Gerg, 2016) are built to tackle, while the rest
of the steps are usually constructed piece-by-piece using the ba-
sic MATLAB functionality. However, since MATLAB does not
provide any smart datatypes for combining metadata with multi-
dimensional arrays, manual bookkeeping is necessary in many of
the steps if one wishes to keep the metadata synchronized with the
operations done to the array. Such bookkeeping is a major source
of errors and a large time expenditure for the programmer, and

easily results in repetetive code if not properly abstracted. This
in turn makes working inside a REPL (read-eval-print-loop) such
as the MATLAB command line or iPython prohibitively cum-
bersome, which is detrimental to rapid prototyping of new algo-
rithms.

Object-based datatypes that encapsulate both the data and meta-
data along with methods to operate on the data are a common
abstraction for problems of this kind in many languages. For ex-
ample, open source solutions like Spectral Python (Boggs, 2016)
or xarray (Hoyer and Hamman, 2017) exist for manipulating hy-
perspectral or general multidimensional data in Python, but no
similar datatype implementations exist for MATLAB.

This paper showcases a framework for simplifying hyperspectral
data analysis workflows in a similar way using MATLAB. The
framework package is mostly feature complete for the author’s
current workflow and a development version has already been
used for the hyperspectral analysis in (Salmi et al., 2017). Gen-
eral design principles of the framework are detailed in section 2,
with the internal implementation along with the main properties
of the class listed in section 3. The implemented methods for
simplifying the steps of the example workflow are presented in
section 4. Section 5 contains a note about the testing methodol-
ogy used for ensuring code quality, and section 6 has notes on
acquiring and using the code.

2. GENERAL DESIGN

The guiding principle in the access to the internal object prop-
erties is that of minimal privilege, meaning that the programmer
using the data type is purposely unable to access the object in a
way that could de-synchronize the metadata and the data (at least
without considerable effort). This is a design choice of the author
to favor data integrity over malleability, and in contrast with the
approach taken by many libraries which often allow most unsafe
operations, but recommend not using them. However, the author
feels that recommendations rarely deter programmers looking to

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W3, 2017
Frontiers in Spectral imaging and 3D Technologies for Geospatial Solutions, 25–27 October 2017, Jyväskylä, Finland

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-3-W3-47-2017 | © Authors 2017. CC BY 4.0 License. 47

Table 1. Data type object properties

Property Description Example content

Data Data array ones(10,10,100)

Files File(s) of origin {’data.hdr’}
Quantity Quantity of the data ’Reflectance’

WavelengthUnit Unit of the wavelengths ’nm’

Wavelength Vector of wavelengths [400 ... 500]

FWHM Vector of FWHMs [3, 4, 3, ..., 3]

History History of operations {’Read from file’}
Version Class version ’0.8.0’

do the easy thing instead of the right thing, and as such prefers
the implemented technical solution.

Following from this, all the object properties are accessible read
only, and can only be assigned new values during after object con-
struction through the object various object methods that validate
the input for the specific purpose. In addition, methods that ma-
nipulate the data but cannot generate meaningful default metadata
for the results, require the user to supply valid metadata instead
of generating non-meaningful defaults.

There has also been some effort to standardize the format of class
method arguments to improve the user experience. As a notable
divergence from the usual MATLAB syntax, the class methods
use the syntax [x,y] for indexing horizontal and vertical pixel
coordinates instead of the usual MATLAB syntax of [y,x]. This
makes it easier to relate indices to the MATLAB image visualiza-
tions.

3. INTERNALS

The main content of the software package is a MATLAB object
class named Cube which contains as properties the hyperspec-
tral data and relevant metadata and provenance for the data. The
properties implemented in the current version are listed in table 1.
The properties are read-only after the creation of the object, and
can only be changed using the object methods to ensure validity
and synchronization during operations.

The object class is implemented as a MATLAB value class, which
means that each object method returns a copy of the object instead
of a reference (along with any other return values). This makes
the state of the object easier to reason about, but relies on the
MATLAB memory management to optimize memory use. The
internal object methods do however try to minimize the creation
of temporary extra copies of the data where possible.

The argument parsing for the Cube class constructor (see 4.1)
is implemented flexibly using the class CubeArgs, which is sub-
classed from the MATLAB InputParser class. Due to the amount
of development effort required to implement this kind of func-
tionality in MATLAB, the “Name, value” syntax is currently only
implemented for the constructor method.

Some utility functions, which are not specific to, but used by
the Cube class are separated into a separate namespace in the
static class Utils. ENVI file format reading functionality is sim-
ilarly implemented as a static class ENVI which contains wrap-
pers around the existing ENVIreader/writer functions.

4. FUNCTIONALITY

This section will detail some of the main features of the class
and provide examples of their usage. It is not intended as a full

API reference, but as more of cursory look at common MATLAB
operations on multidimensional data and their implementation in
the Cube class.

4.1 Constructing Cubes

Given a hyperspectral data cube (or any 3-dimensional array),
the construction of a Cube object is straightforward. For a simple
example, the syntax

c = Cube(ones (10 ,10 ,16));

creates a Cube object with the given array and default metadata
(vector of band indices 1 to 16 for Wavelength, vector of zeros
for FWHM, and Quantity set to the string “Unknown”). Metadata
can be specified to the constructor using the usual “Name, value”
syntax used by many MATLAB functions. As an example, one
could construct a mockup radiance Cube with actual wavelength
metadata as

mockup = Cube(ones (10,10,25), ...
’qty’, ’Radiance ’, ...
’wlu’, ’nm’, ...
’wl’, 501:525 , ...
’fwhm’, 5*ones (1 ,25));

The possible arguments can be found from the documentation
of the Cube() constructor method or by directly inspecting the
argument parser class CubeArgs.

4.2 Slicing

Instead of the usual MATLAB slicing syntax for multidimen-
sional matrices, the Cube class implements different methods for
slicing different dimensions. While slightly more verbose, this
makes code much more readable, especially when combining mul-
tiple operations on a single line.

• For spatial slicing, the current implementation has the method
crop(tl,br), which takes in the top left and bottom right
corners of the desired area as 2-element vectors of the pixel
coordinates, and returns the rectangular region defined by
the corners. For more advanced region selection, users should
employ the mask and unmask functionality shown in sec-
tion 4.5. For a simple spatial crop of 20 pixels on each side
of the image, one could supply the following syntax:

cropped = cube.crop (...
[20,20], ...
[cube.Width -20, cube.Height -20])

Note here the usage of the Cube properties Width and Height
to extract the dimensions, which makes the code very read-
able at only a slight cost to terseness.

• The method px([x,y]) selects individual pixels based on
their pixel coordinates. It is possible to supply multiple co-
ordinates, in which case the resulting Cube will be a list
(N × bands matrix) of the spectra in those coordinates.

• For band selection, the method bands() takes in a vec-
tor of band indices (between 1 and the number of bands
in the data) and returns a Cube object with the specified
bands. The syntax allows for some more manipulations be-
sides just selection of existing bands: For instance, it is pos-
sible to replicate bands by supplying the same index multi-
ple times. There is currently no direct support for selecting

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W3, 2017
Frontiers in Spectral imaging and 3D Technologies for Geospatial Solutions, 25–27 October 2017, Jyväskylä, Finland

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-3-W3-47-2017 | © Authors 2017. CC BY 4.0 License. 48

wavelengths explicitly. Instead, bands() also accepts log-
ical vectors for selecting bands, which allows selection of
certain wavelengths by e.g. the following syntax using the
Wavelength property of the Cube:

longer_wavelengths = ...
cube.bands(cube.Wavelength > 1000);

Both syntaxes will result in Cubes that have their other properties
appropriately modified, with only the wavelength and FWHM in-
formation corresponding to the selected band left preserved in the
metadata.

For comparison, listing 1 demonstrates the amount bookkeep-
ing required for selecting wavelengths from a dataset without the
Cube class, and keeping the metadata synchronized at the same
time. It also demonstrates the namespace pollution that is hard
to avoid without more specialized data containers that reduce the
need for separate variables for in-memory data management.

Listing 1. Selecting data by wavelength with plain MATLAB
wl = 501:1000; % mock wavelengths
fwhm = 5*ones (500); % mock fwmh data
g = rand (100, 100, 500); % random datacube

% Selecting bands corresponding to 600 -800 nm range
idx = wl >= 600 & wl <= 800;
g2 = g(:, :, idx);
wl2 = wl(idx);
fwhm2 = fwhm(idx);

4.3 Arithmetic

Basic arithmetic (namely the operators +,-,*,/) is currently im-
plemented by overloading the operators for the Cube class. The
Quantity parameters of the argument cubes are by default naively
combined to denote the new quantity, i.e. dividing a radiance
cube by a radiance cube will produce a cube with quantity “ra-
diance / radiance”. However, since MATLAB allows extra ar-
guments to overloaded functions, it is possible to use the syntax
oper(a,b,quantity) to supply the result quantity as an extra
argument. As an example with the radiance Cubes, one might
wish to calculate reflectance using the following syntax:
refl_cube = div(cube , white_ref_cube , ...

’Reflectance ’);

The resulting Cube would then contain the data in cube divided
elementwise by that of white ref cube, with the Quantity set
to the string “Reflectance”.

In the current implementation, the operators are explicitly re-
stricted to Cubes of the exact same dimensions (also erroring on
any arrays that are not Cubes). This is in contrast to the nor-
mal MATLAB operators on numerical arrays, which in the 2017a
version do automatic expansion of the argument arrays (using
bsxfun). This is due to the fact that bsxfun does not necessarily
replicate the arguments along a dimension that is sensible for a
hyperspectral data cube. For instance, if one were to add a con-
stant vector (like a bandwise correction to the spectrum) to a full
data cube, the correctness of the result would depend on which of
the three dimensions of the cube would match the length of the
vector first, and could result in errors for cubes with two dimen-
sions with the same length.

Other mathematical operations that one might want to apply on
a single cube (such as multiplication by a scalar, logarithms etc.)
can be applied by using the existing functions with the family of
map functions detailed in section 4.4.

4.4 Function application

For more functionally inclined programmers, the Cube class im-
plements methods for applying given functions on the Cube data
without the need for explicit deconstruction of the Cube object.
For applying functions expecting various dimensions of data, three
different functions are implemented:

• The method map(f, ...) may be used to apply a given
function f on the whole data cube. If the function changes
the data in a meaningful way, the user is expected to supply
the new metadata for the result as separate parameters using
the Name, value syntax of the Cube constructor.

• mapSpectra(f, ...) applies the function f on the data
after reshaping the hyperspectral data cube into a list of
the spectra, and after application reshapes the result into
the original spacial dimensions of the data (with possible
change in the number of bands). This is equivalent to the
functionality demonstrated in section 4.5, but using the full
data cube instead of selected parts of it.

• mapBands(f) applies the function f to each band of the data
cube by looping through each layer in turn, applying f and
collecting the results. This provides an easy way to apply fil-
tering operations that are not dependent on the wavelength,
but due to the looping (which there is in this general form no
easy way to avoid), it may be preferable to implement more
costly filter directly on cubes and apply them using map.

4.5 Masking and unmasking

For selecting regions of interest (especially non-rectangular ones)
from a Cube, the class implements a method called mask. Given a
binary mask image (logical matrix) with a size matching the spa-
tial dimensions of the Cube, it reduces the Cube to a N × bands
matrix of pixel spectra selected by the mask, with N the number
of True pixels in the mask image. The rationale for the list form of
the output is compatibility with machine learning due to the fact
that the N × bands matrix is of the form samples× features
expected by most existing machine learning applications, which
makes it very fast to use mask() to extract data for classification
tasks.

The unmask() method is used for applying the reverse transfor-
mation: Given a mask image with N True pixels, it reorganizes an
N×bands (or samples×features) Cube into a full Cube with
the spatial dimensions of the mask image, with zeros in the False
mask regions and the data in the True region. If the data in the
list is in the same order as returned by the corresponding mask()

operation, applying unmask() after mask() with the same mask
image results in having a mask applied on a data cube by zeroing
any False entries on each layer.

This along with the map() methods (4.4) allows for very con-
cise applications of existing algorithms on hyperspectral cubes.
For instance consider the example workflow of applying PCA to
masked part of the image in listing 2. For comparison, the same
workflow without the abstractions provided by the Cube class is
also shown.

Listing 2. Performing PCA on a subset of pixels
% g is a datacube with the h*w pixels and b bands
[h, w, b] = size(g);

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W3, 2017
Frontiers in Spectral imaging and 3D Technologies for Geospatial Solutions, 25–27 October 2017, Jyväskylä, Finland

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-3-W3-47-2017 | © Authors 2017. CC BY 4.0 License. 49

% Construct a Cube from the data
c = Cube(g);
% Dummy mask that selects the diagonal
im = eye(c.Height , c.Width);

% Application of PCA using masks and map
c_scores = c.mask(im).map(scores). unmask(im);

% Helper function to extract the scores from PCA
function [y] = scores(x)

[~, y] = pca(x);
end

4.6 File operations

For convenience, the implementation includes a separate class
for wrapping ENVIreader/writer operations with those of the
Cube class. The included ENVI class has methods for reading
and writing ENVI files directly to Cube objects, filling in all the
Cube metadata fields directly from the ENVI header file. A write
wrapper method has also been implemented for directly writing
both the data and metadata from a Cube object to an ENVI file.
Other file formats can easily be added using similar wrappers for
existing functionality.

4.7 Visualization

For visualization, the class implements a few plotting and image
viewing methods to make data exploration easier. The main ad-
vantage over using the MATLAB visualizations directly is that
the Cube class can utilize its metadata to assign most axis ticks,
labels and titles appropriately in the produced figures. If found in
path, they also employ the MATLAB version of Colorbrewer (Co-
beldick, 2017) colormaps for better representation of the data.
The main visualizations are provided by the following methods:

• The method im(b) displays a single band b as an image
using the MATLAB function imagesc.

• rgb(r,g,b) displays the bands at indices r, g and b as a
three-color image using MATLAB imshow.

• plot() plots the spectra using MATLAB plot(). It also
automatically restricts the number of spectra to display in
order to prevent MATLAB from freezing when trying to plot
too many curves at once.

• hist() calculates histograms of each band layer in the Cube,
combines them and displays them using surf in combina-
tion with a colormap for a versatile visualization.

The visualizations always return the Cube they were visualizing,
which makes it easy to both extract the result of a Cube operation
and visualize it using a single line of code. For example, the
following line would visualize the first band of the cube, apply a
crop and then display the same band in the cropped image in a
new figure, while also extracting the result as a new Cube:

tl = [20 ,20]; % top left
br = [100, 100]; % bottom right
cropped = c.im(1). crop(tl, br).im(1);

This generally makes data exploration effortless and easy to inte-
grate with follow-up scripting.

4.8 Provenance

Apart from the visualizations, all the Cube methods that oper-
ate on the data append a string representation of their action to
the History property of the returned Cube. This allows those
of us with less-than perfect memory of our command line usage
to inspect the operations performed on the Cube objects in the
MATLAB workspace by simply looking at the strings stored in
the property of each object. In the current implementation, there
is however no inbuilt way to store the history of each Cube in a
file apart from saving the whole object to a file, which is in gen-
eral a fragile procedure due to the way MATLAB handles object
loading.

5. TESTING

The class constructor and methods have unit tests written for the
using the MATLAB unit testing framework. Integration testing
of method and constructor interoperations has not yet been im-
plemented apart from some individual cases. The tests are in-
cluded in the release version of the package, and can be run by
users on their MATLAB installation to ensure compatibility with
their given version of MATLAB. People interested in the frame-
work are invited to submit test cases and bug reports to the au-
thor (preferably through pull requests to the Github repository,
see section 6).

6. OBTAINING THE CODE

At the time of writing, version 0.8.0 of the hsicube framework
is available from the authors Github page1 under the MIT license.
The package contains the methods needed to directly read ENVI
files under the ENVI module, however this functionality requires
one to have the ENVIreader/writer (Totir and Howat, 2010)
in their MATLAB path, which is not included in the package and
must be acquired separately. Similarly, for the nicer Colorbrewer
colormaps (Cobeldick, 2017) the required package needs to be
acquired separately and placed in path before utilizing the visu-
alizations.

REFERENCES

Boggs, T., 2016. Spectral python. Software. Available from
http://www.spectralpython.net.

Cobeldick, S., 2017. Colorbrewer: Attractive and
distinctive colormaps. Software. Available from
https://se.mathworks.com/matlabcentral/fileexchange/45208-
colorbrewer–attractive-and-distinctive-colormaps.

Gerg, I., 2016. Matlab hyperspectral toolbox. Software. Available
from https://github.com/isaacgerg/matlabHyperspectralToolbox.

Hoyer, S. and Hamman, J., 2017. xarray: N-d labeled arrays and
datasets in python. Journal of Open Research Software.

Salmi, P., Eskelinen, M. A., Kremp, A. and Pölönen, I., 2017.
Constructing absorbance spectra and abundance maps of micro-
and nanoalgae by transmission hyperspectral imaging of liquid
cultures on petri dishes. PLOS One. Submitted.

Totir, F. and Howat, I., 2010. Envi file
reader/writer. Software. Available from
https://se.mathworks.com/matlabcentral/fileexchange/27172-
envi-file-reader-writer.

1https://github.org/maaleske/hsicube

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W3, 2017
Frontiers in Spectral imaging and 3D Technologies for Geospatial Solutions, 25–27 October 2017, Jyväskylä, Finland

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-3-W3-47-2017 | © Authors 2017. CC BY 4.0 License. 50

