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ABSTRACT: 

“Spectral imaging” (SI) refers to the acquisition of the three-dimensional (3D) spectral cube of spatial and spectral data of a source 
object at a limited number of wavelengths in a given wavelength range. “Snapshot spectral imaging” (SSI) refers to the instantaneous 
acquisition (in a single “shot”) of the spectral cube, a process suitable for fast changing objects. Known SSI devices exhibit large 
total track length (TTL), weight and production costs and relatively low optical throughput. We present a simple SSI camera based 
on a regular digital camera with (i) an added diffusing and dispersing “phase-only” static optical element at the entrance pupil 
("diffuser") and (ii) tailored compressed sensing (CS) methods for digital processing of the diffused and dispersed (DD) image 
recorded on the image sensor. The diffuser is designed to mix the spectral cube data spectrally and spatially and thus to enable 
convergence in its reconstruction by CS-based algorithms. In addition to performing SSI, this SSI camera is capable to perform color 
imaging using a "monochromatic" or "gray-scale" image sensor without color filter arrays. 

1. INTRODUCTION

“Spectral imaging” (SI) refers to the acquisition of the three-
dimensional (3D) spectral cube of spatial and spectral data of a 
source object at a limited number of wavelengths in a given 
wavelength range. SI has a multitude of applications in many 
fields (Brady, 2009), including biology (Garini et al., 2006), 
medicine (Uhr et al., 2012), food inspection (Long et al., 2005), 
archaeology, art conservation (Lang, 2012), astronomy and 
remote sensing (Foster et al., 2006).  SI with mosaic spectral 
filter arrays on the image sensor (Themelis et al., 2008) leads to 
substantial light gathering losses. In "staring" or "pushbroom" 
SI systems (Carlsohn, 2006), removable sets of narrow band-
pass filters (Long et al., 2005) or time-sequential dynamic 
spectral filters (López-Álvarez et al., 2008) slow the SI process 
and cannot apply it to dynamic, fast changing objects. Modern 
trends in digital imaging (Brady, 2009) resort to a generic 
combination of optics with digital processing and to compressed 
sensing (CS) (Donoho, 2006, Candès et al., 2006) for various 
purposes and applications. CS-based algorithms already have 
many applications in astronomy, biology, medicine, radar and 
seismology (Stern et al., 2008, Willet et al., 2011). “Snapshot 
spectral imaging” (SSI) refers to the instantaneous acquisition 
of the spectral cube, a process suitable for fast changing objects. 
There are several known SSI devices/architectures that 
demonstrate the progress and high potential of SSI. In 
particular, the Coded Aperture Snapshot Spectral Imager 
(CASSI) (Wagadarikar et al., 2008) designs use an intermediate 
image plane and a coded aperture.  The coded aperture can be a 
binary mask, a gray-scaled coded mask (Rueda-Chacon et al., 
2013), or a spatial-light modulator (Yuan et al., 2015). These 
designs yield 2D coded measurements on the sensor array, from 
which the spectral cube is reconstructed using CS algorithms.  
* Corresponding author

The need for intermediate image formation optics (in addition to 
regular components of a digital camera) in several of the 
referenced devices, increases the total track length, the weight 
and the production costs of such SSI devices. In order to convert 
a regular digital camera to an SSI camera for arbitrary objects, 
we resort here to (i) a diffusing and dispersing "phase-only" 
static optical element at the entrance pupil, and (ii) tailored CS 
methods for digital processing of the diffused and dispersed 
(DD) image recorded on the image sensor. The limited volume
of data in the DD image acquired by a 2D image sensor in a
single snapshot poses a problem for the reconstruction of a 3D
spectral cube. To overcome this limitation and to enable SSI, we
resort to compression of spatial data in multispectral images
with the aid of CS-based reconstruction algorithms. The diffuser
is designed to mix the spectral cube data spectrally and spatially
and thus to enable convergence in its reconstruction by CS-
based algorithms. We demonstrate the feasibility of
reconstructing experimental SSI images with a relatively
straightforward linear iterative process of "split Bregman
iterations" (SBI) (Goldstein et al., 2009, Cai et al., 2009).

2. SPECTRAL IMAGING WITH A DISPERSIVE
DIFFUSER 

2.1 Continuous Model of the Optical System 

A schematic layout of the spectral imaging system with 
monochromatic image sensor, a pupil-domain diffuser and 
compressed sensing is shown in Figure 1. The system (Golub et 
al., 2016) includes elements of a regular digital camera such as 
an imaging lens, a monochromatic image sensor, a bandpass 
spectral filter, the transparent diffuser at the entrance pupil, as 
well as a digital processor, which also enables conversion of the 
spectral cube to RGB color coordinates. 
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Figure 1. Optical scheme of a spectral and color imaging optical 
system based on a digital camera and a diffuser. 

To succeed in image reconstruction, modern CS theory requires 
a highly randomized system response. Classical spectroscopic 
systems comprise a dispersive optical element like a prism or a 
diffraction grating. In order to minimize the required number of 
optical elements and to restrict our imager design to a 
modification of standard digital cameras, we decided to 
combine dispersive and diffusing properties required from the 
added optical element in a single diffuser.  We assume that the 
entrance pupil is located in front of the imaging lens. The 
diffuser is positioned at the “pupil domain”, i.e., entrance pupil 
or the system aperture of the imaging lens and works as a 
random dispersing element that provides the DD image at the 
monochromatic image sensor. A digital processor processes the 
DD image to reconstruct a plurality of monochromatic images 
(i.e., the spectral cube) of the source object through iterative 
CS-based algorithms. 

While the diffuser was designed for wavelength desl , other 
wavelengths in the entire spectral range are incident on it.  The 
diffuser (Golub et al., 2016) is designed as a thin phase optical 
element with linear dimensions uD D¢ ¢´ v , whose grooves are 

fabricated of a transparent material with refractive index ( )n l
and providing a phase function ( ), ;uj l¢¢ v . The design choice
for the diffuser’s phase function was a randomly permutated, 
nonlinear saw-tooth phase. Figure 2 illustrates a portion of the 
diffuser's phase profile. The diffuser provides wavelength-
dependent light diffusion and accordingly serves also as an 
inherent disperser. Therefore, it provides spectral multiplexing 
along with spatial multiplexing. 

Figure 2. (a) Dimensions of the diffuser, scaled to exit pupil 
coordinates; (b) fragment of a randomized piecewise-constant 

phase function of the diffuser. 

We assumed that before introduction of the 1D diffuser, the 
imaging system was spatially shift invariant and its optical 
resolution was matched to the sensor pixel pitch. When installed 

into the SI optical system, the diffuser modifies the system pupil 
function of the entire SI optical system towards 

( ) ( ); e p, ;,x .P uiu l j l¢ ¢¢ ¢= é ùë ûv v     (1) 

Accordingly, the coherent PSF can be calculated as an inverse 
Fourier transform  
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where ( );h x l¢  is the 1D version of ( ), ';h x y l¢ , R  is the
distance from the center of the exit pupil to the image sensor 

and ( ) ( )sin
sinc

px
x

px
= .  Accordingly, the 1D incoherent PSF

associated with the diffuser at wavelength l  is 

( ) ( ) 2; ; .Ih x h xl l¢ ¢=    (3) 

The diffuser converts the original image into a DD image with 
programmed blur for each object point. For each wavelength, 
the intensity ( ), ;I x y l¢ ¢  of the DD image in presence of the

diffuser may be expressed by just a 1D convolution II h I¢ = Ä  

of the ideal ("non-dispersed") image ( ), ;I x y l  with the

incoherent PSF ( );Ih x l¢ . The convolution is calculated 
separately for each coordinate y  of the object as 

( ) ( ) ( ), ; , ; d .II x y h x - x ; I x y xl l l¢ ¢ ¢= ò  (4) 

2.2 Discretization 

Mathematical formulations for digital image processing 
obviously require a transfer from continuous coordinates and 
wavelengths of optics to discrete indices of vectors and 
matrices. To define spatial sampling, we consider the discrete 
pixelated structure of the image sensor, which is characterized 
along x and y axes by a 2D spatial pitch x yd d´ , a number 

,x yN N  of pixels, and a number bN  of bits per pixel.  The 
imaging zoom has to match the blur caused by the PSF of the 
diffuser such that the entire DD image stays within the aperture 
of the image sensor, i.e. within xN  pixels in each row and yN
pixels in each column. The “non-diffused-non-dispersed” image 
obtained without a diffuser at same zoom is spread to a lesser 
degree, and occupies accordingly only a smaller number 

xN N<  of pixels located in the central part of each image 

sensor row. Even though the number y xN N´  of sensed pixels 

may be smaller than the number of voxels yN N L´ ´  in the 
targeted 3D spectral cube, we refer the CS approach that 
enables restoration of the entire spectral cube with reasonable 
accuracy. The spectral cube uses a finite number L  of spectral bands 
with central wavelengths ll , 1,l L=  out of the entire continuous 
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wavelength range. A discrete version of the spectral cube in each 
spectral band can be expressed by the yN N L´ ´  matrix: 

( )( ), , 1, , 1, ,j
i l yX i N j N= = =X    (5) 

where spectral cube voxels can be expressed as 
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Equation (4) is converted into a discrete convolution applied separately 
to each of yN  image rows. Discrete pixels of the DD image at the thl
wavelength and at a given row j can be expressed as a discrete 1D 
aperiodic convolution 
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sampled values of ( ).Ih x - x;l¢  Note that in our model with a 1D 

diffuser, each ¢ =j j  row of the DD image is in one-to-one 

correspondence with a respective thj  row of the spectral cube. The 
contribution of polychromatic light to discrete pixels of the DD image is 
denoted as ( )j

iY ¢  and can be expressed as a sum of the intensities of 

monochromatic DD images ( ), ;i j lI x y l¢¢  over all wavelengths ll , 

1,=l L . At each image pixel, the sum can be expressed as 
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where non-negative numbers lk  characterize the overall relative 
spectral sensitivity of the image sensor and the optical transmission of 
the optical components of the system at wavelength ll , and where 
coefficients 
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describe the effect of the diffuser scaled with the relative spectral 
sensitivity of the optical system. For mathematical considerations, it is 
convenient to concatenate the spectral and vertical spatial dimensions of 
the spectral cube to a matrix X  with dimensions yN L N´ , 
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such that each spectral dimension is described by a sub-matrix lX  of 

size yN N´ . We define an xN NL´  dimensional block Toeplitz 
sensing matrix  

( ),  1, , 1, , 1,, ,i i,l xA A i N i N l L¢ ¢= = = =  (11) 

which may be treated as a block rectangular matrix 

1 2, , ... LA A A A= é ùë û  composed of L  Toeplitz sub-matrices lA  of 

size xN N´  each.  Each sub-matrix lA  corresponds to a single 
wavelength and features the randomization originating from the 
diffuser. The 2D DD image is represented as a matrix Y of size 

x yN N´ , 

( ) ( ) ( ) ( )1 2, ,1, ,..., .yj N
yj N é ùé ù= =ë û ê= úë û

Y Y Y Y Y  (12) 

( )jX  is a single column vector from the concatenated spectral cube to 
be reconstructed from the single column sensed vector ( )jY . Matrix 

X represents the spectral data to be reconstructed from DD image .Y   
Equation (8) can now be expressed in matrix form as the multiplication 
of a vector of length N L  over a matrix of size xN NL´ . The 

multiplication results in a vector of a smaller length xN

   ( ) ( ).j jA=Y X  (13) 

For efficient 2D data processing, Equation (13) can be expressed in 
matrix form as the multiplication of matrix X  of size yN L N´  over 

the sensing matrix A of size ,xN NL´   resulting in a matrix of smaller 

size x yN N´

,A =X Y (14) 

as customary in CS theory. 

2.3 Sparse Representation and Reconstruction 

Equation (14) provides the CS model for our spectral imaging system. It 
shows that the recorded DD image Y  includes a linear mixture of 
spectral and spatial data of the entire spectral cubeX , as described by 
the sensing matrix .A  The CS problem consists of the reconstruction 
of matrix X  in such a way that Equation (14) with a given matrix Y  
becomes satisfied. The number x yN N´  of equations for Y in 

Equation (14) is less than the number of unknown variables yN L N´
in .X  To obtain a sensible solution, we have to impose some constraints 
on the spectral cube to be reconstructed. The commonly chosen 
constraint in CS is sparsity. The latter originates from a well-established 
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fact that typical 2D digital images have a sparse representation in 
wavelet and wavelet-frame domains. Consequently, spectral cubes, 
which are collections of monochromatic images, possess the same 
property, i.e. they can be represented by collections of sparse matrices 
that contain many zeros. Therefore, in accordance with the CS theory, 
we look for a solution of Equation (14) that is maximally sparse in a 
wavelet-frame domain. The mathematical relation between spectral 
cube matrix X  and its sparse representation d (having only a relatively 
small number of non-zero elements) can be represented as a linear 
transform D=d X , with a ”sparsifying” matrix .D  Then, d is the 
transform coefficients array. The sparse representation may be 
implemented by resorting to the 2D frame transforms (Averbuch et al., 
2014). Another option is the 3D wavelet transform, where the 2D 
transforms are applied to the monochromatic images and 1D transform 
is applied to the cube comprised of the 2D transform coefficients 
matrices along the spectral dimension. The spectral-dimension wavelet 
transform provides an additional sparseness of the representation 
because spectra in each pixel are changing smoothly from one band to 
another. For the wavelet transforms, the biorthogonal wavelets derived 
from the discrete splines of 12-th order were utilized (Averbuch et al., 
2014).  We denote by Y the matrix of the inverse 2D (3D) frame 
(wavelet) transform, such that spectral cube X  can be restored from its 
sparse representation d  by 

.= YX d  (15) 

Equation (14) can be expressed in the form 

,Q =d Y  (16) 

Where 

.AQ = Y (17) 

The CS theory (Donoho, 2006, Candès et al, 2006) addresses the 
feasibility for reconstruction of sensible solution of Equation (16) for a 
special case of K-sparse matrices or vectors d that have only K non-
zero elements.  It is known that the K-sparse sensible solution d  of 
Equation (16) (and consequently X  of Equation (14)) exists and can be 
reconstructed for a class of matrices Q that satisfy a RIP condition of 
order K.  The RIP condition of order K in CS (Candès et al, 2006) 
demands that any sub-matrix of Q  formed by less than K columns 
must satisfy the inequality: 

   
2 2 2

(1 ) (1 )K Kl l l
d d- £ Q £ +d d d   (18) 

for any K-sparse vector d ,  where 0Kd >  is some small number.  In 
order to reconstruct the sparse representation d  of the spectral cube X 
from the DD image Y, we resorted to split Bregman iterations (SBI) 
(Goldstein et al., 2009, Cai et al., 2009). Specifically, d was 
reconstructed as a solution of the following constrained minimization 
problem: 

1 2l l
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d
YXd d X Here, 

under the 2l   norm of a matrix { },i jM=M we mean the Frobenius 

norm, and the 1l  norm is 
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The minimization problem is equivalent to minimization of a functional 
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where ,µ c  are Lagrange weight coefficients.. In particular, coefficient 
c  weights the sparsity level of d, and coefficient µ  weights the fit of 
AX  toY . Following (Shen, 2010), a closed loop of the iterative 

algorithm uses a feedback from the 1l  error and a shrinking operation 
that ensures a sparse reconstruction.  In more detail, the minimization of 
the functional in Equation (20) is performed by an iterative process: 
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where k  is the number of the iteration, kb  and kc are intermediate 

vectors used to execute iterations, TA  denotes a transposed matrix A  
, 1, 1b cd d= =  and 

( ) ( ) ( )shrink , sgn max ,0x x xg g= -   (22) 

is the function applied to each vector component. The iterations are 

terminated once the inequality  
2l

A s- £X Y   is achieved, or after a 

given number of iterations. The parameter s is determined by the noise 
level on the sensor array.  

3. EXPERIMENTAL OPTICAL ARRANGEMENT AND
CALIBRATION 

The concept of our CS-based SSI camera was proven for L =33 
wavelength bands in an optical experiment that used a regular digital 
camera equipped with a monochromatic (without color filters array) 
image sensor, a diffuser,  and specialized digital image processing 
capabilities, as shown in Figure 1. A color iPad screen served as an 
object. The experimental arrangement included the following optical 
components: a regular digital camera with a 5 Megapixel, 12-bit  Aptina 
Demo kit (Aptina, 2015)  monochromatic  image sensor, a DSL935 
Sunex imaging lens with a numerical aperture (NA) value of 
approximately 0.17, and a wide bandpass spectral filter for the entire 
visible range. The image sensor had 2592 x 1944 pixels with a pixel 
pitch of x yd d= = 2.20µm. Even though our generic hardware and 
software enable large dimensions, we performed our experiments with 
spectral cubes of size 256 256 33yN N L´ ´ = ´ ´  pixels. The 
choice of the DSL935 Sunex imaging lens, whose entrance pupil is 
located at the first optical surface of its first lens, enabled proper placing 
of the diffuser at this pupil. The entrance pupil diameter is 3.2mm. 
Various diffusers were fabricated in the Tel Aviv University Nano-
Center facilities with a standard 16-depth level binary staircase dry 
Reactive Ion Etching (RIE) technology on a 0.5mm thick, double-side 
polished 4" fused silica wafer, along with 16 different diffuser designs. 
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The actual diffuser design used in our experiments had a 3.2mm clear 
aperture that matched the entrance pupil and included dN = 400, 
uD =8µm wide stripes, as illustrated in Figure 2. 

In order to obtain a more accurate model of our physical system, we 
performed direct calibration of the SSI camera by direct point-spread 
function (PSF) measurements that provided the sensing matrix.  An 
object with single thin white vertical column displayed on the iPad 
screen was imaged in the dark at several spatial positions in each 
spectral band. Separated spectral bands for the calibration were 
achieved by resorting to a set of L =33 Thorlabs narrow-bandpass 
10nm FWHM spectral filters that covered the 400-720nm wavelength 
range in equal gaps of 10nm and which were mechanically integrated in 
filter wheels. To have a firm reference for spectral cube 
reconstruction in our experiments, we conducted direct 
reference measurements of the spectral cube of size 

256 256 33yN N L´ ´ = ´ ´  for the object of interest. In 
addition, spectral calibration procedure was performed in order 
to correct non-ideal aspects, such as the white line's spectrum 
used for the PSF measurements and the non-uniform 
transmittance of the bandpass filters. 

4. OPTICAL EXPERIMENT FOR SPECTRAL
IMAGING 

An exemplary "Color Checker" test object was used, among others, for 
optical SSI experiments. This was created on the iPad screen mounted 
on the optical bench in the arrangement of Figure 1, at a fixed distance 
of 88cm in front of the imaging lens. The reference spectral cube 
measurements, the PSF measurements and the grayscale snapshots of 
the DD image were recorded on the image sensor in the dark, with the 
diffuser in place. The digital reconstruction of the spectral cube was 
performed using the SBI process with a measured sensing matrix A  
and optimized iteration parameters ,µ c . Two reconstruction 
methods were considered: 1) 2D frame transforms of the 
monochromatic images, 2) 3D wavelet transforms of the 
spectral cubes. For this, the biorthogonal wavelet and tight and 
semi-tight frame transforms derived from polynomial and 
discrete splines were tested. The diverse libraries of such 
transforms were designed in (Averbuch et al., 2014). The 
experimental results demonstrated below are produced by using 
the 2D semi-tight frame transform derived from the quasi-
interpolating polynomial splines and the biorthogonal 3D 
wavelet transform derived from the twelfth-order discrete 
splines. 

Quality evaluation of the reconstructed spectral cube X  was done by 
comparison to the reference spectral cube X , which was measured 
directly with the set of L=33 bandpass filters. We expressed the 
normalized root-mean-square errors (RMSE) of the full spectral cube as 

( ) ( )
1

2 2
, ,

1 1 1 max max

1   ,
y j jNN L

i l i l

i j ly

X X
RMSE

NN X XL = = =
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where ( )
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j
ii

X X  and ( )
max , , ,max=

j ll

j
ii

X X . Then, we 

calculated the peak signal-to-noise ratio (PSNR) as 

1020log ( ).PSNR RMSE= -   (24) 

Similarly, we have performed a quality evaluation of the 
monochromatic images per each wavelength, the spectra per each 
spatial coordinate and the RGB image, all derived from the 

reconstructed spectral cube. The RGB conversion was done in 
accordance with the CIE standard observer color matching functions 
implemented by Matlab function “RGB_from_Spectral_cube” (Foster, 
2017). 

Figure 3 shows images that correspond to the "Color Checker" object.  
Figure 3(a) shows the original object displayed on the iPad, Figure 3(b) 
shows the RGB image calculated from direct measurements with the 33 
bandpass filters, and Figure 3(c) shows the DD image recorded at the 
monochromatic image sensor with 10.6ms integration time.  Note that 
this time is substantially smaller than the 80.8 x 33=2666 ms needed for 
use of 33 bandpass filters, for a given peak signal of 90% of the sensor's 
saturation level. Such small integration time provides one major 
advantage of SSI over time-sequential acquisition methods. Figure 3(d) 
and 3(e) show the RGB images built from the reconstructed spectral 
cubes, obtained with the 2D framelet and 3D wavelet reconstruction 
methods, respectively.  

Figure 3. Object "color checker" with the 33 spectral bands in 
the range of 400nm-720nm: (a) iPad object; (b) reference 

spectral cube directly measured with 33 spectral filters and 
converted to RGB format; (c) dispersed and diffused (DD) 

image optically recorded at the image sensor; (d), (e), 
reconstructed spectral cubes converted to RGB format, obtained 

with 2D framelet and 3D wavelet methods, respectively. 

The calculated PSNR (RMSE values in brackets) values of the spectral 
cubes obtained with the 2D framelet reconstruction method are 26.13 
(0.05), and for the 3D wavelet reconstruction method are 28.38 (0.038). 
For the RGB images, the calculated PSNRRGB (RMSERGB values in 
brackets) values of the obtained with the 2D framelet reconstruction 
method are 17.67 (0.049), and for the 3D wavelet reconstruction 
method are 15.92 (0.16). Figure 4 shows five out of 33 monochromatic 
images extracted from the spectral cubes at wavelengths 450 nm, 540 
nm, 570 nm, 610 nm and 650 nm. Figure 4(a) shows the original, 
Figures 4(b) and 4(c) and show the images that correspond the 2D 
framelet reconstruction and 3D wavelet reconstruction methods, 
respectively. Figure 4(d) shows the RMSEλ values per wavelength, 
while Figure 4(e) shows the PSNRλ values per wavelength, for the 
monochromatic images obtained with the 2D framelet (blue) and 3D 
wavelet (dashed green) reconstruction methods. 

(a) (b)

(c)

(d) (e)
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Figure 4. Five out of 33 monochromatic “Color Checker” 
images extracted from the spectral cubes at wavelengths 450nm, 
540nm, 570nm, 610nm and 650nm: (a) reference measured with 
spectral filters; (b) reconstructed images using the 2D framelet 
and (c) 3D wavelet methods, respectively. (d)  RMSEλ and (e) 

PSNRλ values as functions of wavelength for the 
monochromatic images that were CS reconstructed using the 2D 
framelet method (blue) and 3D wavelet method (dashed green). 

Figures 5 and 6 show reference and reconstructed spectra and RGB 
values, respectively, at eight spatial sampling points, marked by the 
same numbers as in Figure 3(b). 
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Figure 5. Spectra at chosen pixels of reference (red), 2D 
framelet (blue) and 3D wavelet reconstructed (dashed green) of 
the “Color Checker” with the 33 spectral bands in the range of 

400nm-720nm. Position of pixels as in Figure 3(b). 

Some shifts and missing peaks in the spectra and RGB values could be 
caused by a mismatch between the measured sensing matrix and the 
actual physical sensing matrix of the optical system with the diffuser, as 
well as due to the presence of actual noise in the experimental system. 
The PSNRi,j (RMSEi,j in brackets) values of the spectra at the marked 
points 1-8 for the 2D framelet transform are 10.24 (0.31), 11.2 (0.28), 
11.74 (0.26), 11.99 (0.25), 15.52 (0.17), 12.11 (0.25), 10.83 (0.29) and 
10.48 (0.3), whereas for the 3D wavelet transform the values are 14.34 
(0.19), 14.26 (0.19), 15.72 (0.16), 11.08 (0.27), 14.31 (0.19), 17.73 
(0.13), 11.56 (0.26) and 10.21 (0.31).  To conclude, the 3D wavelet 
method exhibits smaller error for the entire spectral cube compared to 
the 2D framelet method. In particular, it yields an improvement in the 
spectral reconstruction in certain spatial coordinates. It is, however, 
inferior in the reconstruction quality of some of the monochromatic 

wavelength images, as well as in the quality of the reconstructed RGB 
image. 
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Figure 6. Calculated RGB values from spectra at chosen pixels 
of reference (cyan), 2D framelet reconstructed (purple) and 3D 

wavelet reconstructed (pink) of the “Color Checker" object. 
Position of pixels as in Figure 3(b). 

5. SIMULATIONS WITH SPECTRAL CUBE
OBTAINED WITH VTT SPECTRAL IMAGER

In order to expand the analysis of the suggested concept, we 
have performed computer simulations using a spectral cube 
obtained with a VTT spectral imager prototype. This spectral 
imager, provided by Jyväskylä University (JyU), is integrated 
with a piezo-driven Fabri-Perot Interferometer (FPI), which 
enables time sequential scanning of the spectral domain, in the 
range of 400-1000 nm. The spectral cube was acquired from the 
human skin tissue with a suspected Melanoma tumor. A method 
to delineate the skin area affected by a tumor using the VTT 
spectral imager was reported in (Zheludev et al., 2015). The 
spectral cube's original dimensions, which was imaged in the 
460-850nm range, were 1200 1920 120´ ´ . In order to
incorporate the skin spectral data into the above computational 
scheme and, at the same time, to significantly reduce the noise 
inherent in the data, the following preprocessing operations 
were carried out: 1)  The original cube was spatially cropped to 
the  size 1024 1024 120´ ´ and padded by zeros to a cube of size 
1024 1024 132´ ´ , denoted as .CRC  2) A two-level 3D 
biorthogonal wavelet transform was applied to the cube .CRC  
The wavelet transform coefficients filled a cube denoted by 
CΤC , of size 1024 1024 132,´ ´ where the sub-cube denoted 
by LLL  of size 256 256 33,´ ´ comprised the coefficients 
produced by low-pass filtering in all three dimensions. 3) The 
sub-cube ,LLL  which presents a smoothed and down-sampled 
by factor of 4 copy of the cube ,CRC  was selected for further 
processing. Recall that the last three planes of the sub-cube 
LLL comprise all zeros. 
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Figure 7. "Skin Tissue" with 30 spectral bands in the range of 
460nm-850nm: (a) pseudo-color representation of the spectral 
cube measured with the VTT spectral imager; (b) pseudo-color 

representation of the reconstructed spectral cube; (c), (d) 
simulated dispersed and diffused image with and without 

Randomizer, respectively. 

Figure 8. Five out of 30 monochromatic “Skin Tissue” images 
extracted from the spectral cubes at wavelengths 509.53nm, 

609.16nm, 643.59nm, 763.86nm and 832.96nm: (a) reference 
measured with the VTT spectral imager; (b) reconstructed 

monochromatic images from the simulation. (c)  RMSEλ and (d) 
PSNRλ values as functions of band number for the 

monochromatic images. 

The sensing matrix A  was generated by performing theoretical 
PSF calculation in the wavelengths of interest, assuming that 
our system is equipped with a nominal phase profile diffuser. 
The sensor image Y  was calculated according to Equation (14) 
and multiplied with a matrix R consisting of randomly 
distributed plus- and minus-ones. Correspondingly, columns of 
the sensing matrix A were multiplied by the matrix R . Our 

assumption that the reduction of the sensing matrix coherency 
can improve the reconstruction results, was corroborated by the 
simulations.  For the simulation, we used the 2D framelet 
reconstruction method. Figure 7(a) shows pseudo-color 
representation of the "Skin Tissue" reference spectral cube. Figure 7(b) 
shows the pseudo-color representation built from the reconstructed 
spectral cube, obtained with the 2D framelet reconstruction method. 
Figure 7(c) shows the simulated DD image ,A=Y X  while Figure 
7(d) shows the randomized DD image .RY  The calculated PSNR 
(RMSE values in brackets) values of the spectral cube are 27.59 
(0.042). Figure 8 shows five out of 30 non-zero monochromatic images 
extracted from the spectral cube at wavelengths 509.53nm, 609.16nm, 
643.59nm, 763.86nm, 832.96nm. Figure 8(a) shows the original and 
Figure 8(b) shows the reconstructed images. Figure 8(c) shows the 
RMSEλ values per wavelength, while Figure 8(d) shows the PSNRλ 
values per wavelength.  
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Figure 9. Spectra at chosen pixels of reference (red) and 
reconstructed (dashed black) of the “Skin Tissue” with the 33 

spectral bands in the range of 460nm-850nm. Position of pixels 
as in Figure 7(a). 

Figure 9 shows reference and reconstructed spectra at eight spatial 
sampling points, marked by same numbers as in Figure 7(a). The 
PSNRi,j (RMSEi,j in brackets) values of the spectra at the marked points 
1-8 are 25.07 (0.056), 26.77 (0.046), 21.86 (0.081), 24.78 (0.058), 20.61 
(0.093), 25.11 (0.056), 30.27 (0.03) and 26.99 (0.045). 

6. DISCUSSION AND CONCLUSIONS

We showed experimentally and by simulations the feasibility of 
snapshot spectral imaging with a regular digital camera complemented 
by a minor hardware addition in the form of a single phase-only static 
diffuser. Our phase-modulation architecture removes the need for 
intermediate image plane optics and/or spatial light modulators. 
This can lead to a real miniaturization of SSI cameras, thus providing 
significant advantages in applications where weight, volume and/or 
price are critical. The key element of our optical system is a diffuser 
designed to create a randomized sensing matrix built from calibration 
measurements of the PSF. The use of a monochromatic sensor, instead 
of a regular mosaic color sensor, increases the captured light amount 
and, therefore, the sensitivity of the camera. Successful acquisition of 
RGB images by a fully monochromatic image sensor is another 
important result. 

Our method relies substantially on spatial and spectral mixing at the 
image sensor and subsequent reconstruction of the spectral cube with 
CS-based algorithms.  It demonstrated the ability to reconstruct both 
spectral and spatial data from spatial-only data acquired by a 
monochromatic image sensor. This is achieved by proper use of the 
sparsity property, naturally attributed to photographic images. We 
believe that one of the major advantages in our reported development is 
the resorting to specific wavelet and frame transforms designed in 
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(Averbuch et al., 2014), which provide the efficient conversion of the 
spectral cubes into their sparse representation.  

Results of this work may have applications in miniaturized snapshot 
spectral imagers of dynamic objects in such fields as remote sensing and 
astronomy, biology, environmental studies, agriculture, food and drug 
inspection, automotive and vehicle sensors, medical diagnostics, 
photographic and video cameras, smartphones, wearable devices and 
augmented reality. 
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