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ABSTRACT: Monitoring critical infrastructures, especially those that are covering wide-zones, is of fundamental importance and 

priority for modern surveillance systems. The concurrent exploitation of multisensor systems, can offer additional capabilities, on 

day and night acquisitions and different environmental/illumination conditions. Towards this direction, we have designed a multi-

sensor system based on thermal, shortwave infrared and hyperspectral video sensors. Based on advanced registration, dynamic 

background modelling and data association techniques, possible moving targets are detected on the thermal and shortwave infrared 

modalities. In order to avoid the computational intensive co-registration with the hyperspectral video streams, the detected targets 

are projected through a local coordinate system on the hypercube image plane. The final detected and verified targets are extracted 

through fusion and data association, based on temporal spectral signatures and target/background statistics. The developed 

multisensor system for the surveillance of critical infrastructure has been validated for monitoring wide-zones against different 

conditions showcasing abilities for detecting and tracking moving targets through fog and smoke. 

1. INTRODUCTION

During the last decade, research and development in optics, 

photonics and nanotechnology permitted the introduction of 

new innovative video sensors which can cover a wide range of 

the UV, visible as well as near, shortwave and longwave 

infrared spectrum. Multispectral and hyperspectral video 

sensors based mainly on filterwheels, on micro-patterned 

coatings on individual pixels, on optical filters monolithically 

integrated on top of CMOS image sensors have been developed 

and are gradually becoming available from the industry. 

Hyperspectral video technology has been employed for the 

detection and tracking of moving objects for engineering, 

security and environmental monitoring applications. Several 

detection algorithms have been studied for different 

applications with moderate to sufficient effectiveness 

(Manolakis et al., 2014), (Pieper et al., 2015). In particular, 

hyperspectral video systems have been employed for 

developing object tracking methodologies through hierarchical 

decomposition for chemical gas plume tracking (Tochon et al., 

2017). Multiple object tracking based on background 

estimation in hyperspectral video sequences has been also 

addressed (Kandylakis et al., 2015). Certain processing 

pipelines have been also proposed to address the changing 

environmental illumination conditions (Pieper et al., 2015). 

These detection capabilities are gradually starting to be 

integrated with other video modalities like e.g., standard 

optical (RGB), thermal and other sensors towards the effective 

automation of the recognition modules. For security 

applications, the integration of multisensor information has 

been recently proposed towards the efficient fusion of the 

heterogeneous information for developing robust large-scale 

video surveillance system (Fan et al., 2017). 

Multiple target detection, recognition and tracking and security 

event recognition is an important application of computer 

vision with significant attention on human motion/activity 

recognition and abnormal event detection (Liao et al., 2017). 

Most algorithms are based on learning robust background 

model however, estimating a foreground/background model is 

very sensitive to illumination changes, extracting the 

foreground objects as well as recognition its class/label is not 

always trivial. 

Novel approaches in multiple target tracking algorithms 

include automated segmentation and tracking modules based 

on CRF models (Milan et al., 2015). Moreover, the 

simultaneous addressing of data association and trajectory 

reconstruction tasks has been proposed through the use of 

energy minimization functions, signifying a shift from the 

traditional tracking by-detection paradigm (Milan et al., 2016). 

The use, furthermore, of socio-topology models for the 

minimization of the topology-energy-variation function, has 

shown promising results for multiple person tracking in crowd 

scenes (Gao et al. 2017). 

Towards the same direction, a greedy batch-based minimum-

cost flow approach has been proposed, employing a generalized 

minimum-cost flows (MCF) algorithm on each batch to 

generate a set of trajectories with different probabilities (Wang 

et al., 2017).  In addition, a hybrid data association framework 

has been proposed which utilizes global data association, 

taking multiple video frames into account to alleviate 
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irrecoverable errors caused by the local data association 

between adjacent frames (Yang et al., 2017). 

Moreover, to address mutual occlusions and imprecise image 

based observations, a new predictive model on the basis of 

Gaussian Process Regression has been proposed, which utilizes 

generic object detection, as well as instance-specific 

classification, for refined localisation (Klinger et al., 2017). 

For the re-detection of the target in the case of long-term 

tracking drifts, a feature integration object tracker named 

correlation filters and online learning (CFOL) has shown 

promising results as well (Zhang et al., 2017). 

In this paper, we build upon recent developments (Kandylakis 

et al., 2015) on multiple object tracking from a single 

hyperspectral sensor and have integrated another two thermal 

and shortwave (SWIR) video ones. The monitoring system can 

perform both during the night and daytime by exploiting, 

through multimodal data fusion, the spectral observations of 

every sensor. Moreover, the developed system has been 

validated against different conditions, showcasing abilities for 

detecting moving targets through fog/smoke, delivering 

approximation and/or intrusion alerts effectively. 

2. METHODOLOGY

2.1 The multisensor video system 

The developed multisensor system consists of a thermal 

camera, a hyperspectral camera, a SWIR camera as well as an 

RGB sensor for cross-reference and validation (Table 1). The 

thermal sensor is FLIR’s TAU2, with the capability of 

recording one band in the range of 8 to 13 μm, at a spatial 

resolution of 620 × 480, and at a rate of 9 Hz. The SWIR 

sensor is Xeneth’s Bobcat 640, which covers the range of 900 

to 1700 nm, at a resolution of 640 × 512 and a recording rate of 

100 Hz. The hyperspectral sensor is based on an imec snapshot 

mosaic CMOS. It acquires 41 bands, in the range of 400 to 950 

nm, at a resolution of 500 × 270 per band and has a frame rate 

of 24 fps. 

Sensor Thermal Hyperspectral SWIR 

Spectral Range 8-13μm 400 – 950nm 900 – 1700nm 

Spectral Resolution 1 band 41 bands 1 band 

Spatial Resolution 620 × 480 500 × 270 640 × 512 

Frame Rates 9 Hz 24 fps max 100 Hz 

Lens 19mm 35mm 25mm 

Interface USB3 GiGE GiGE 

Table 1. Sensor Specifications 

The hyperspectral sensor is accompanied with an fPGA that 

handles the frame acquisition. All the sensors are then 

connected to a mini-ATX local processing unit which handles 

the rest of the processing. 

During data acquisition, the sensors are mounted on a 

relatively high fixed platform or tripod, acquiring oblique 

views of the Region of Interest (ROI). Although fixed, the 

sensors and the video sequence is affected by the changing 

wind and sudden abrupt bursts. The sensors and their 

corresponding field of view (FOV) are presented in Figure 1. 

Due to their lens configuration, the thermal sensor has a wider 

field of view, followed by the SWIR sensor which observes a 

relatively smaller area. The hyperspectral sensor has the 

relatively smaller FOV, while all are covering the ROI. The 

ROI plane is associated with a Local Coordinate System (LCS). 

2.2 Multi-modal data processing 

The developed system integrates a number of software modules 

like dimensionality reduction algorithms (Karantzalos 2009), 

registration (Karantzalos et al., 2014), (Vakalopoulou and 

Karantzalos, 2014), background subtraction, moving objection 

detection and calculation of optical flows, velocity/ density/ 

direction (Kandylakis et al., 2015). 

Figure 1: The main three sensors of the multisensor system and 

their corresponding field of view (FOV) on the region of 

interest (ROI). The ROI plane is associated with an arbitrarily 

defined, local coordinate system (LCS). 

Moreover, certain software modules are responsible for 

performing scene classification tasks based on recent 

approaches like in (Makantasis et al., 2015). The monitoring of 

activity inside a desired ROI, and the projection of all frames 

in the same coordinate system for geo-referencing have also 

been addressed. 

The first step before the main processing pipeline is presented 

in Figure 2, which is the calculation of the 3x3 transformation 

matrices for the projection of all three image planes on an 

arbitrarily defined Local Coordinate System (LCS). Also, all 

the inverse transformation matrices were computed for the 

inverse perspective transformations from the LCS to the image 

planes. A significant advantage of this approach is that, the 

actual projection of the entire image (hypercube) is not 

required, omitting a computationally expensive step. Instead, 

only the coordinates of the possible moving objects are 

converted between reference systems. 
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Figure 2: Establishing correspondences among the Field of 

Views. The perspective transformations and inverse 

perspective transformations are estimated and employed to 

convert coordinates to the Local Coordinate System (LCS) 

from the oblique views of all image planes and vice versa. 

The main processing pipeline is summarized in Figure 3. In 

order to keep the computation complexity as low as possible 

while allowing near-real time performance, the possible 

moving targets are detected on the SWIR and/or the thermal 

sensor (covering both day and night acquisitions). On these 

modalities data registration, dynamic background estimation 

and data association are executed towards the detection of the 

possible moving objects/targets (PMT). The background 

estimation is based on an adaptive procedure during which the 

background was dynamically estimated based on the mean 

intensity value of approximately 50 frames. The registration is 

performed per frame in order to address the slightly moving 

FOV due to abrupt winds. 

Figure 3: The processing pipeline for the multisensor data 

fusion 

The possible detected targets, in a binary form on the SWIR or 

thermal image plane, are then projected into the LCS (Figure 

2). In particular, the bounding box or polyline coordinates are 

projected to the LCS through the use of the transformation 

matrix TS. The resulting coordinates are then projected to the 

hyperspectral image plane using the inverse transformation 

matrix TH
-1. These projected targets are then directly fused on 

the hyperspectral image plane, avoiding the hypercube co-

registration with the other modalities. The final detected 

targets are extracted (Figure 4) after their spectral verification 

and recognition with through smoke/fog capabilities based on 

data association modules that exploit their temporal spectral 

signatures (Figure 5).  

3. EXPERIMENTAL RESULTS AND VALIDATION

Several experiments have been performed in order to develop 

and validate the performance of the different hardware and  

Figure 4: The multimodal data fusion module can detect the 

moving target even through smoke/fog conditions based on the 

best available modality, data association through temporal 

spectral signatures and efficient fusion modules on a given 

region of interest. 

software modules. A number of experiments have taken place 

in the framework of the ZONeSEC FP7 EU project 

(https://www.zonesec.eu/). During all our experiments, 

although the sensors were mounted on a single platform and 

carefully fixed, due to the changing wind and abrupt wind 

bursts, slight movements on each FOV were encountered, 

which were addressed by the co-registration software modules 

in near-real time. 

In Figure 6, experimental results after the application of the 

developed hardware and software systems are presented. In 

particular, the final detection moving targets (their polygons) 

for four indicative frames are presented. These polygons are 

overlayed on the respective acquired SWIR image that was 

employed in the detection process, as well as on three 

hyperspectral bands centered around 476, 539, and 630nm, 

respectively. The bounding boxes are outlined in red, and 

zoomed in views are provided for better distinction. It can be 

observed that the projection of the quadrilateral bounding box 

on the hyperspectral image plane, distorts it slightly into a 

more general polygon shape. 
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Figure 5: The temporal spectral signatures of both the targets as well as the background are calculated and employed during the 

data association and fusion recognition and verification step. 
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Figure 6: Experimental results after the application of the developed system. The indicative frames number #037, #079, #087 and 

#115 are shown. For each frame the SWIR and three hyperspectral bands (476, 539, 630 nm) are presented. The detected targets 

are annotated with a red color onto the SWIR. Their projections are also shown onto the hyperspectral images. Zoom-in views are, 

also, provided.

In Figure 6 (Frame #037), a relative difficult detection case is 

presented. The moving target is barely discernible from the 

background on the SWIR imagery, however the detection 

works correctly, and its projection on the hyperspectral image 

Frame #037 

SWIR 476 nm 539 nm 630 nm 

Frame #079 

SWIR 476 nm 539 nm 630 nm 

Frame #087 

SWIR 476 nm 539 nm 630 nm 

Frame #115 

SWIR 476 nm 539 nm 630 nm 
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plane is also accurate, as the same part of the background and 

moving object are represented in both. 

In Figure 6 (Frame #079), the detection is working smoothly, 

with the bounding box containing 100% of the moving target. 

The projection on the hyperspectral image is also accurate in 

this case. The target has moved in closer proximity to the 

spectral system sensors, allowing for slightly increased 

geolocation accuracy. 

The detection and projection modules also seem to perform for 

the next presented case in Figure 6 (Frame #087). Again, the 

developed detection and tracking modules managed to extract 

correctly the location both on the SWIR and hyperspectral 

modalities. This was a relative different case since the target 

was running.  

Finally, a significant challenging case is presented in Figure 6 

(Frame #115). The detected moving target on Frame #115 is 

slightly visible in the SWIR which possess certain through 

fog/smoke capabilities. The algorithm managed to detect and 

successfully continue tracking the target. However, during the 

fusion process the hyperspectral cue indicated relative high 

reflectance values for this projected object which was not 

matching with the actual target. The data association term 

indicated high confidence levels in the initial SWIR detection 

and tracking steps and therefore the final decision was positive 

and correctly verified. 

In particular, the data association term is based on spectral 

statistics (mean, standard deviation, etc) which are computed 

both for the object (possible moving objects: top left Figure 7) 

as well as the background. For the spectral statistics, as 

background is considered the rest of the area that surrounds 

each possible moving object inside its bounding box. These 

statistics are captured and calculated at every frame and feed 

the fusion and data association modules. 

4. CONCLUSIONS

In this paper, we propose the use of a multisensory system, 

which can address a range of critical environmental and 

illumination conditions like smoke, fog, day and night 

acquisitions, etc. These conditions have been proved 

challenging for conventional RGB sensors, or any system based 

on a single sensor, in general. Multimodality may answers a 

direct need of the security industry, for round the clock, precise 

monitoring in any weather or emergency condition.  

We have developed the required hardware and software 

modules in order to perform near real-time video analysis for 

detecting and tracking moving objects/targets. The software 

modules and algorithms developed are of low-complexity, to 

achieve near-real time processing of the multimodal data, and 

timely provision of events/alerts. These preliminary 

experimental results demonstrate the capabilities of the 

proposed system to monitor critical infrastructure in 

challenging conditions The system is able to detect possible 

moving targets as well as to track and recognise them in time 

and through smoke, fog, etc. 

Figure 7: The spectral signature of the possible detected target 

(top left) from all sensors is stored and analyzed during the 

fusion and data association module. The same information is 

also computed regarding the object background which is the 

rest of the surrounding area inside its bounding box. 
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