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ABSTRACT: 

 

Recently, global climate change is one of the biggest challenges in the world. Dense downfall and following catastrophic floods are 

one of the most destructive natural hazards among all. Consequences do not only risk human life but also cause economical damage. 

It is critical rapid mapping of flooding for decision making and emergency services in river management. In this study, we apply a 

multi-temporal change detection analysis to investigate the flooded areas occurred in Edirne province of Turkey. The study area is 

located at the lower course of Meric River (Evros in Greece or Maritsa in Bulgarian) which is the border between Turkey and 

Greece. The river basin is dominated by cropland which suffers from strong catastrophic precipitation. This situation cause overflow 

of capacity of the dams located along the river and serious flooding occur. Due to its dynamic structure the region exposed to heavy 

flooding in the past. One of the biggest inundations was occurred at 2nd February 2015 which resulted severe devastation in both 

urban and rural areas. For the analyses of the temporal and spatial dynamics of the disaster we use Sentinel-1 Synthetic Aperture 

Radar (SAR) data due to its systematic frequent acquisition. A dataset of pre-event and post-event Sentinel-1 images within the 

January and February of 2015 period was acquired. Flooded areas were extracted with threshold, random forest and deep learning 

approaches.  

 

1. INTRODUCTION 

Freshwater resources cover less than 1% of Earth’s surface 

(Harrison et al. 2016). As its nature it has a non-uniform spatial 

distribution which makes it more valuable. It provides natural 

environment for wildlife habitat and also source for human life 

such as agriculture, recreation and hydroelectric development. 

Flood disasters occur due to both climatological and 

anthropogenic reasons. Availability of near-real time inundation 

information is an important data for decision makers such as 

local government and insurance companies because floods 

effect both settlements and agriculture which cause economic 

losses (Tsyganskaya et al 2018). 

 

Remote sensing and particularly synthetic aperture radar (SAR) 

sensors are suitable for data acquisition under dense 

precipitation conditions and provide rapid assessment and long 

term monitoring of the flooded areas. SAR system is sensitive to 

water due to specular reflection and able to acquire image both 

day and night which give it a characteristic specification. This 

provides utilization of SAR data for surface water and changes 

such as flood mapping is more common and feasible than 

optical data. Change detection approaches using SAR data 

includes backscatter intensity, polarimetry and interferometric 

coherence information for input and apply classification 

algorithms (Tsyganskaya et al 2018). Long et al (2014) applied 

thresholding technique on difference of SAR images and 

applied segmentation to extract flood extend using Envisat and 

Radarsat-2 images. They also presented restriction of evaluation 

using optical data due to acquisition period and cloudiness of 

the data. Refice et al (2014) used coherence image in addition 

to intensity information of Cosmo-SkyMed data to detect areas 

affected by flood. A detailed review on flood inundation using 

SAR data could be found in Schumann et al (2015) and 

Tsyganskaya et al (2018). 

 

In this study, the case of winter transboundary floods occurred 

in February 2015 over River Meric is under investigation in 

order to exploit multi-temporal S-1A data. The study area has 

been suffered of severe floods many times due to incapability of 

reservoir capacity and operational system of dams located on 

the river (Akkaya and Dogan 2016). Mallinis et al (2013) used 

single Envisat and two Landsat data, and applied object based 

image analysis for flood area mapping of flood occurred in 

February 2010 on Meric River. They concluded that Landsat 

result confirmed higher accuracy than Envisat result when 

comparing official extent map. Twele et al (2016) studied 

flooding occurred on Meric River in March 2015. An automatic 

thresholding and fuzzy logic based classification method was 

utilized to extract water and land classification using single 

post-event Sentinel-1 data, and Worldwiew-2 data for 

validation. They concluded the accuracy of VV is slightly better 

than VH result. A combination of dual polarimetric S-1 and full 

polarimetric ALOS-2 imagery for flooded vegetation areas was 

investigated by Plank et al (2017). They applied different 

scenarios utilizing decomposition of S-1 and ALOS-2 data 

using unsupervised Wishart classification and an object-based 

post-classification refinement. It is concluded that fusion of two 

images increased the accuracy of mapping flooded vegetation 

area.  
In this research the output of different flood mapping 

techniques are discussed applying threshold, random forest and 

deep learning approaches using backscatter intensity of S-1 

dataset. The remaining sections are organized as; information 
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given on study area and materials in section 2. Methodology is 

described in section 3. Spatial pattern of flood and maps are 

presented in section 4. A summary of the preliminary output of 

the paper and further works are explained in section 5.  

 

2. TEST FIELD AND DATA SET 

2.1 Test Field 

The study field is Meric River in Edirne Section (Evros in 

Greece or Maritsa in Bulgarian) which is in the northwest of 

Turkey. The field is also the natural border between Turkey and 

Greece (Figure 1). Meric is one of Balkan's greatest rivers. It 

springs in mountain of Bulgaria and flow through Greece and 

Turkey. Its length is 490 kilometers and its 172 kilometers are 

in Turkey. The main tributaries are Ergene, Arda and Tunca. 

Meric River in Edirne Section causes many serious floods that 

especially affects agricultural areas. 

 

 
Figure 1. Meric River in Edirne Section 

 

2.2 Data Set 

For the analyses of flood, Sentinel-1A SAR data and RASAT 

optical images were used. New generation C-band SAR mission 

of Earth Space Agency (ESA) S-1 satellite provides large 

coverage of swath width (250 km), short repeat cycle (6 days 

with S-1A and S-1B), dual polarimetry mode (VV and VH), 

medium resolution (10-20m) and narrow orbit tube for 

interferometric acquisitions. S-1A is acquired in Level-1 Single 

Look Complex (SLC) data format and is collected in the 

Interferometric Wide (IW) mode. These satellite features 

provide more ground information for the flood events. To 

extract to water bodies, VV polarization is used because it gives 

better results than VH polarization (Twele et al. 2016). Four 

images have same incidence angle (33.7°) and footprint. The 

footprint of images is shown in Figure 2. 

 

 
Figure 2. Footprint of Sentinel-1 images 

 

In order to distinguish flood mapping, three Sentinel-1 

images of pre-event and post-event within the January and 

February of 2015 period were acquired (Table 1). Temporal 

resolution of Sentinel-1 is 12 days.  

 

RASAT is the second earth observation satellite of Turkey and 

was designed and assembled in TÜBİTAK (The Scientific and 

Technological Research Council of Turkey). The characteristics 

of RASAT is given in Table 2. As Sentinel, RASAT images 

were also acquired pre-event and co-event.  

 

 

Flood 

(02/02/2015) 

Acquisition 

Date 

Pass 

Direction 
Mode 

Pre-event 
17/01/2015 Descending IW_SLC 

   

Post-event 
10/02/2015 Descending IW_SLC 

22/02/2015 Descending IW_SLC 

Table 1. Sentinel-1 data. 

 

 

Characteristic Value 

Orbit type Sun-synchronised 

Orbital inclination 98.1° 

Spatial resolution 
7.5 m (Panchromatic) 

15 m (VNIR) 

Radiometric resolution 8 bit 

Temporal resolution 2.5 days 

Spectral resolution 

Pan: 0.42-0.73 μm 

B3: Red: 0.58-0.73 μm 

B2: Green: 0.55-0.58 μm 

B1: Blue: 0.42-0.55 μm 

Table 2. Characteristics of RASAT. 

 

3. METHODOLOGIES 

In this study, some pre-processing have been applied to the 

Sentinel-1 images to extract the water bodies. Sentinel 

Application Platform (SNAP) software is used for these pre-

processes that are Radiometric Calibration, Thermal Noise 

Removal, TOPSAR-Deburst, Multilook, Terrain Correction and 

Speckle filter. Three approaches were used to extract water 

bodies of Meric River. These are backscatter thresholding, 

random forest classification and deep learning classification 

approaches. The results obtained with these three methods are 

compared visually with the RASAT images (7.5m x 7.5m) to 

figure out the detailed extraction of the flooded and non-

flooded areas. Using pre and post event images changes of two 

periods between 17/01/2015 and 10/02/2015 as first period, and 

17/01/2015 and 22/02/2015 as second period were analyzed 

using three methods. As shown in Figure 3 red color reflects the 

spatial extent of flooding water.    

 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. False color composition of flooding area; (a) RGB: 

17/01/2015-10/02/2015-10/02/2015, (b) RGB: 17/01/2015-

22/02/2015-22/02/2015  

(a) (b) 
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3.1 Backscatter Thresholding 

Flood mapping with multi-temporal change detection analysis 

of radar data depends on radar backscatter. Backscatter results 

due to its reflectance value with water’s surface. As a result of 

homogeneous and smooth surface of the water bodies, the 

return of radar pulses will be weak. Since return of radar pulse 

from dry areas will be stronger, characteristic can easily be 

determined. Water extraction with the help of threshold 

determined by backscatter value σ0 (dB) is a commonly used 

method. For each pixel of the SAR image, we determine the 

measured backscatter value, we can predict the probability of 

the pixel being a water structure. For this purpose, the 

histogram of backscatter value was analyzed. Low backscatter 

values correspond to the flooded areas and high backscatter 

values correspond to the non-flooded areas. First log-ratio 

image which shows the intensity difference was calculated and 

thresholding was applied for both periods (Cui et al. 2017).  

 

3.2 Random Forest Classification 

As an alternative to classical pixel and object-based 

classification methods, various learning-based algorithms are 

developed to obtain more accurate and reliable information 

from satellite images. One of them is Random Forest 

Classification (RFC) which is a community learning method 

and its algorithm is known as one of the most successful 

classification methods. The RFC method provides a unique 

predictive validity and model interpretability within known 

machine learning methods. RFC method provides better 

generalizations because of the random sampling and the 

improved properties of the techniques in community methods. 

For this reason, there are valid estimates (Horning, 2010).  

 

3.3 Deep Learning Classification 

The method proposed by Gong et al (2016) was applied onto 

the flood event in Edirne occurred in the early 2015. This 

method is based on a variant of the deep belief network called 

as Restricted Boltzmann Machines (RBM). In this approach, 

corresponding pixels from pre-event and post-event SAR 

images are vectorized in their local neighborhood and these 

vectors are concatenated as one vector for each pixel in interest. 

All concatenated vectors are then fed into RBM based deep 

belief network model with their labeling information for 

training. This model learns the change between local patches 

vectorized before with user provided labels. The labeling is 

marking the corresponding patches, which are not changing, as 

1 and marking the changing patches as 0. 

 

The topology and the parameter setting of the RBM based 

change detection method is summarized in Table 3. The 

network has one input layer, three RBM layers and one output 

layer. The input layer, as explained above, takes the pixels in 

5x5 neighborhood from pre-event and post-event SAR images 

as one concatenated vector. The first RBM layer is fed with this 

2x5x5 vector to project it into 500-dimensional vector. The 

second RBM layer re-projects the 500-dimensional vector into 

250-dimensional vector. Similarly, the second RBM layer 

projects 250-dimensional vector into 200-dimensional vector. 

The output layer then classifies the 200-dimensional feature 

vector as 1 (no change case) or 0 (change case) by using 

negative log likelihood as loss function. The conjugate gradient 

is used as optimization algorithm with a learning rate of 0.005 

and a momentum of 0.9. The number of epoch is 10 for 

training. 

 

 

Table 3. The properties of RBM based change detection 

method. 

 

4. RESULTS AND DISCUSSIONS 

The analysis conducted to extract water surface and its spatial 

extent. In all approaches the results provide us two classes as 

water which shows the inundation area and others where did not 

effected by flooding between SAR image acquisitions.  

 

First analyze is conducted using histogram of backscatter values 

and threshold values are determined (Figure 3). The threshold 

values were set as -15.47 dB, -15.59 dB and -17.46 dB in date 

order. After determining the backscatter threshold, a binary 

image was created. As seen in Figure 4 flooded areas are 

represented with black and non-flooded areas with white color 

(Figure 4a and 4d). In the first period the extention of river 

flooding is much more than the second period. The extention is 

reduced within following twelve days. 

 

In the analysis of RFC two parameters should be defined by the 

user to initiate the algorithm. These parameters are number of 

training samples and number of trees to be improved to 

determine the best partition (Breiman and Cutler, 2005). In this 

study, classifications were carried out by taking number of 

training samples as 5000 and number of trees as 10. The results 

of the classification for both data pair is shown in Figure 4b and 

4e. In the results RFC performed smoother output comparing to 

other results. There are less distributed water bodies in both 

periods.  

 

In the results of RBM approach the flood delineated areas 

showed similar spatial distribution with other two approaches. 

In the results it is indicated that apart from river sides randomly 

distributed water bodies are also extracted (Figure 4c and 4e). 

These regions are covered with cropland and backscatter values 

of cropland showed similar values as water due to high moisture 

content.  

 

For the evaluation of the results higher resolution optical 

images are acquired and changes has been visualized as shown 

in Figure 4. However, due to hydrological dynamics of the river 

the water surface extend changes rapidly and the lack of cloud-

free data did not let to us to acquire better optical data and 

validate the results. Even this condition RASAT image gave 

preliminary results of the extension of the flooding at the 

northern part of the study area (Figure 4 and 5). RASAT images 

clearly showed that inundation covered agricultural areas along 

the river and cause damage over croplands.   

 

 

Parameters Setting 

Learning Rate 0.005 

Updater Nesterov 

Momentum 0.9 

Optimization Conjugate Gradient 

Regularization Yes 

Topology 25-500-250-200-2 

Weight Initialization Xavier 

RBM Loss Function XENT 

Softmax Loss Function Negative Log Likelihood 
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Figure 4. Pre and co-event of RASAT images; left is 

2013.12.03 and right is 2015.02.02  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Results of change detection; first period (17.01-10.02) 

(a) thresholding, (b) RFC, (c) RBM and second period (17.01-

22.02) (d) thresholding, (e) RFC, (f) RBM 

 

 

Using three methods six results are evaluated according to 

multi-temporal analysis and the water extent of inundation is 

indicated in Table 5. The results of RFC method gave smaller 

amount of water extent against other methods in both time 

periods. The highest spatial extent of flooding is extracted with 

RBM method in both time periods (Table 4).  

 

Accuracy assessment analysis is applied for each change 

detection result which are presented in Figure 4 and embed in 

Table 5. For the accuracy analysis 300 pixels are distributed 

randomly on SAR images and accuracies are estimated. All 

results performed high overall accuracies which are more than 

90%. Even log-ratio and thresholding followed approach is a 

simple method it provides good results which makes it practical 

for the monitoring of rapid flooding for large areas.  Although, 

the results of RFC and RBM are close to each other RFC 

approach provides higher accuracies in both periods which 

makes it prominent approach in this case study. 

 

 

 Thresholding 

 17.01-10.02 17.01-22.02 

Water (km2) 115.75 32.89 

Others (km2) 642.61 725.48 

 

 Random Forest Classification 

 17.01-10.02 17.01-22.02 

Water (km2) 86.04 31.25 

Others (km2) 672.32 727.12 

 

 Deep Learning Classification 

 17.01-10.02 17.01-22.02 

Water (km2) 132.45 40.14  

Others (km2) 625.92 718.22 

 

Table 4. Water surface extent of flooding 

 

 

 Thresholding 

 17.01-10.02 17.01-22.02 

Overall 

accuracy 
94.6% 97.6% 

Kappa 83.1% 80.9% 

 Random Forest Classification 

 17.01-10.02 17.01-22.02 

Overall 

accuracy 
96.3% 99% 

Kappa 84.6% 90.9% 

 Deep Learning Classification 

 17.01-10.02 17.01-22.02 

Overall 

accuracy 
95% 98.6% 

Kappa 79.9% 89.3% 

 

Table 5. Accuracy assessment of change detection results 

 

 

 

(a) (b) (c) 

(d) (e) (f) 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W4, 2018 
GeoInformation For Disaster Management (Gi4DM), 18–21 March 2018, Istanbul, Turkey

This contribution has been peer-reviewed.    
https://doi.org/10.5194/isprs-archives-XLII-3-W4-109-2018 | © Authors 2018. CC BY 4.0 License.

 
112



5. CONCLUSIONS 

 

Continuous monitoring of Meric River contributes to its 

protection and management of transboundary floods for 

mitigation of possible risks. Particularly agricultural fields are 

under risk and possible continuous damage may cause lasting 

socio-economic problems in this region. In this study, spatial 

and temporal analysis of flooding which occurred at the border 

of Turkey and Greece is investigated. To this aim, S-1 SAR 

images are utilized and inundation extend is extracted using 

three methods. All three methods provided sufficient outputs 

while RFC indicated slightly better results in both time periods. 

 

As a further research a longer time period of S-1 dataset will be 

evaluated to determine the seasonal dynamics of the flooding 

using digital elevation model. The contribution of coherence 

image and texture information will be also investigated to 

improve the accuracy and map reliable monitoring. 
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