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ABSTRACT: 

SAR polarimetry (PolSAR) is a method that can be used to investigate landslides. Polarimetric scattering power decomposition 

allows to separate the total power received by the SAR antenna, which is divided in surface scattering power, double bounce 

scattering and volume scattering power. Polarimetric indices are expected to serve for landslide recognition, because landslides’ 

scattering properties are different from those of the surrounding forested areas. The surface scattering mechanism is mainly caused 

by rough surfaces like bare soil and agricultural fields, so we hope that this will be the predominant dispersion mechanism in 

landslides. In a study area located in south-western Colombia, we used dual-Pol provided by ESA’s Sentinel-1 satellites and quad-

pol from NASA’s UAVSAR aerial platform. Using C-band and L-band radar images, we analysed the interaction between radar 

signals and landslides. First, with dual-pol we found backscatter calibrate coefficients over four GRD radar images acquired between 

2015 and 2017. The analysis gave an average backscatter value of -14.47 dB for VH polarisation and -8.40 dB for VV polarisation. 

Then, using H-a decomposition for quad-pol data, we validated the high relationship between entropy and alpha parameter, which 

has the highest contribution to the first axis in a principal component analysis. These results were used to obtain an unsupervised 

classification of landslides, that separated the Colombian Geological Service landslide inventory in three classes characterized by the 

mechanism of dispersion. These results will be combined with InSAR parameters, morphometric parameters and optical spectral 

indexes to obtain a local detection model of landslides.  

* Corresponding author

1. INTRODUCTION

The radar is a system that uses electromagnetic waves 

(microwaves) to observe and to exam all kind of objects located 

in the Earth´s surface. Furthermore, it is used to determine the 

distance between an object positioned in the surface and the 

radar itself. It emits signals in different incident angles that 

when reaches an object, the time that the echo takes on coming 

back to the radar is interpreted as the distance between them 

(Richards, 2009). The backscatter energy represents the 

amplitude and intensity of the wave (Rocca et al., 2014). It is 

also characterized as an oblique system, because if the signal 

was to be transmitted straight down towards the the surface, all 

echoes would return to the radar at the same time, without 

having the possibility of making signal differentiations. As it 

doesn’t always takes measures over flat surfaces, the ground 

topography generates problems in geometric parameters: radar 

shadow (steep slopes oriented far from SAR return no signal), 

fore shortening (the slopes oriented to the SAR appears 

compressed) and lay over (steep slopes oriented to the SAR lead 

to ghost images) (Colesanti et al., 2006). 

Landslides are topographic grounds that can be found due to 

natural formations, and it’s very important to examine them 

because they causes human casualties and could damage 

infrastructures (Sun et al., 2017). These landslides were 

classified considering the three principal scattering mechanisms 

obtained when measuring the Earth’s surface over 

electromagnetic field’s alignment, with the final purpose of 

differentiating all objects on the ground. One of them is surface 

scattering (the waves hit a homogenous surface and some of the 

energy is returned to the radar), double bounce scattering (it´s 

the dominant mechanism over man-made structure; in 

comparison to surface scattering, the wave hits two 

perpendicular objects and the intensity of the wave doesn`t 

change at any time), and volume scattering (occurs principally 

in forest canopies; the signal is weaker because the wave is 

scattered and only a few energies are sent back to the radar). 

The objective of this research is to understand and to 

distinguish the mechanisms of interaction between radar energy 

and terrestrial objects, specifically the scatters related to the 

landslides. This was achieved through the analysis of radar 

intensity signal and the decomposition of radar signal.     

2. THEORETICAL FRAMEWORK

A radar image is a product acquired by a satellite in the 

microwave electromagnetic spectrum (Matikainen et al., 2016).  

The technique of this product is obtained by Synthetic Aperture 

Radar (SAR), which is based on the use of the Doppler shift in 

the echoes to achieve a much higher spatial resolution. SAR 
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describes an engineering method that is used to achieve higher 

resolution radar image and it´s produced by using the forward 

motion of the radar. In addition, SAR has the capability of 

sending out and receiving electromagnetic information about 

the targets on the ground, illuminated by the microwave pulses 

(Scaioni et al., 2014; Shibayama et al., 2015). 

A satellite emits a radar signal representing a complex number 

of the amplitude and phase of a wave (Tessari et al., 2017). The 

satellite has the advantage of taking images at any time of the 

day; it does not depend on weather conditions because the 

signal has an atmospheric transparency, and it also possesses 

wide coverage (Plank et al., 2016; Tehrany et al., 2017). 

2.1 Parameters that determine the intensity of the returned 

energy to the radar 

These can be divided into two groups: sensor parameters 

(incident angle of the wave, wavelength, and spatial resolution), 

and ground parameters (topography, surface roughness, and the 

water content of the ground) (Matikainen et al., 2016). 

2.1.1 Sensor parameters 

The radar is an oblique sight where the echoes that come back 

from the ground surface exist in proportion to the distance 

along the ground. The azimuth direction is the projection on the 

ground of the path travelling of the sensor satellite board. In the 

range direction, the radar can oversee at different angles or 

incidence angles, which is defined between the normal to the 

surface and the direction from the sensor to the ground (Notti et 

al., 2010). If the swath is the area that can be covered on the 

ground by the sensor, then the incidence angle can be different 

at the near side of the swath to the far side of the swath. This 

brings as consequence that microwaves interact with the surface 

in a very different way, depending on the local topography. 

Another sensor parameter of the radar system is the wavelength. 

Normally, in radar the X-band (8 – 12 GHz | 2.5 -3.75 cm), i.e. 

COSMO Skymed, C-band (4 – 8 GHz | 3.75 -7.5 cm), i.e. 

Sentinel-1, L-band (0.5– 1.5 GHz |20 – 60 cm), i.e. ALOS 

PalSAR, and P-band (0.25 – 0.5 GHz | 60 – 120 cm), i.e. 

Biomass, are used (Richards, 2009). The longest wavelength 

allows to see deeper into the forest canopy. In overall terms, the 

microwaves interact with objects whose size is approximately 

on the same scale as the wavelength. In other words, a tree can 

look very different, depending on the radar wavelength the 

satellite is using. For example, X-band detects leaves and twigs, 

C-band leaves or small branches, L-band branches, and P-band 

branches and trunks (Vogeler et al., 2016). The spatial 

resolution can influence in the accuracy of the final product and 

it has an indirect relationship with wavelength, being the 

resolution (azimuth x range) higher for the X-band (1 by 1 m 

resolution), C-band (5 by 5 m resolution), L-band (10 by 10 m 

resolution) (Casagli et al., 2017; Ouchi, 2013). 

2.1.2 Ground parameters 

The topography of the earth`s surface causes disturbances on 

radar images (Tessari et al., 2017) like radar shadow, 

foreshortening, and layover. Radar shadow is a very common 

problem on very steep mountains with large incidence angle 

illumination. Due to the side-looking geometry, the back side, 

which faces away from the sensor- is not visible to the radar 

system, hence no information can be collected (Colesanti et al., 

2006). If the signals are sent at the front of a building, the 

region behind it will not reflect any signal, so an obscure region 

is shown on the image. We can fix radar shadow by using a 

digital elevation model to reconstruct all geometric errors 

(Wilson, 2012). Another geometric distortion is foreshortening; 

on this case the terrain slopes looking directly to the radar are 

schematized as having a compressed scale related to its 

appearance (Colesanti et al., 2006). Foreshortening is caused by 

the side-looking geometry of the radar system in mountainous 

areas. The hill slopes facing the sensor appear very bright. The 

effect is more pronounced for steeper slopes and for radars that 

use steeper incidence angles. The last parameter is layover: 

when targets appear to lean over in an image. This is because 

one dimension of a radar image is constructed based on the 

echoes’ delay. The effect is more pronounced for steeper slopes 

and for radars that use smaller incidence angles. Knowing the 

height of the satellite and with the constant velocity of light, this 

error can be corrected (Adiri et al., 2017). 

Surface roughness and water content, also known as dielectric 

constant, are related to each other. If we want to obtain back as 

much energy of the wave as it`s possible, the highest are these 

two parameters, the better it will be. For example, let`s pretend 

a radar image of a field is going to be taken, if the field is a flat 

surface, the signals are going to be reflected away and they will 

not return to the antenna, this is a process called specular 

refraction. On the other hand, in a rough surface occurs a 

diffuse reflection, the wave scatters when it hits all kind of 

inclined surfaces, so some of this energy is received by the 

antenna. Now let`s imagine if it is a rough surface and contains 

a lot of water, more signals will be returned and because the 

water helps the signal to penetrate the ground, and hence more 

diffusion of the signal occurs. A study to determine and monitor 

soil moisture in drylands from C-band SAR images like 

function on surface topography is found in Tansey & Millington 

(2001). Ouchi (2013) explains the models used to estimate the 

soil moisture with prior knowledge of surface roughness. 

2.2 Characteristics of a radar image 

A radar image has diverse types. The Single Look Complex 

(SLC) which includes the amplitude and the phase of the data, 

and Ground Range Detected (GRD) images, which includes 

only the amplitude, are the ones this research is focusing on. 

This kind of images are products obtained by level 1, meaning 

that they were processed with algorithms and calibration data. 

The processing involved to produce Level-1 data products 

includes pre-processing, Doppler centroid estimation, single 

look complex focusing, and image and post-processing to 

generate SLC and GRD products as well as mode specific 

processing for assembling of multi-swath products. SLC images 

allow to produce interferograms of high quality by co-

registration of master and slave radar images (García-Davalillo 

et al., 2014). To obtain a radar image, the Interferometric Wide 

Swath (IWC) mode is helpful because it possesses not only a 

single polarisation mode but two (dual) polarisations, and it has 

a spatial resolution of 5 by 20m. This is obtained from TOPS 

SAR acquisition which eliminates the problems associated with 

ScanSAR technique (Yague-martinez et al., 2016). 

The polarisation modes consist on how the radar signal is 

emitted to the object and how it is reflected, which could be 

transmitted horizontally or vertically, and receive the wave in 
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the same direction (co-polarisation, HH or VV), or it could also 

be receiving in a different direction as it was emitted (cross-

polarisation, HV or VH) (Yonezawa et al., 2012). The HH is 

used for wetland detection, the VV for soil moisture and flood 

conditions (Mahdianpari et al., 2017), and cross-polarisation is 

very useful to estimate the soil properties (Han et al., 2017). 

According to Shimada et al. (2014) the thresholds for HH and 

HV polarisation for separating forest and non-forest were -6.89 

dB in HH and -12.07 dB in HV using L-band backscatter. 

The radar polarimetry is a very useful technique to understand 

the scattering mechanism of different targets on the Earth´s 

surface and it studies and measures the direction of the radar 

signal. The polarisation state of a backscattered wave from a 

natural surface can be linked to geometrical characteristics like 

shape, roughness and orientation and the intrinsic properties of 

the scattered like humidity/moisture, salinity or medium density. 

The polarisation is a property of electromagnetic radiation 

where the wave has an orientation that can be horizontally or 

vertically transmitted and received (Ouchi, 2013). Depending 

on the Earth´s surface slope or the orientation of the objects, the 

polarisation can help to interpret what the surface characteristics 

are. Using polarimetry, it`s possible to determine which 

scattering mechanism is occurring in a topography field 

(Shibayama et al., 2015). One way to determine the scattering 

mechanisms is with the method of decomposition of the alpha 

and entropy values of the wave. By combining these values, a 

bi-dimensional graphic can be obtained and it provides 

information about the mechanism of interaction of an object in 

the ground (Yonezawa et al., 2012). The graphic is divided in 9 

zones, being the 7th and 4th zones equal to double bounce 

scattering, 8th, 5th and 2th corresponds volume scattering, and 

9th, 6th and 3th belong to surface scattering (zone 1 is a no 

feasible zone). The entropy values are given in a range between 

0 and 1, knowing that an entropy between 0 to 0.5 is equal to 

the probability that it exists only one scattering mechanism, and 

an entropy between 0.5 to 1 is equal to the probability that all 

three-scattering mechanism exist in the same pixel. Similarly, 

the alpha values are represented by angles (0º - 90º). The 

predominant scattering mechanism between 0 to 41 degrees is 

surface dispersion, 41 to 47 degrees volume dispersion, and 47 

to 90 degrees double bounce dispersion (Li et al., 2017). 

 

3. METHODOLOGY AND DATA 

3.1 Methodology 

3.1.1 Dual Pol 

With the aid of the Alaska Satellite Facility platform 

(https://www.asf.alaska.edu/), four images obtained with C-

band, and with VV and VH polarisations each one, were 

downloaded: S1A 1C60 (acquired on May 12th, 2015), S1B 

2EDC (Nov 20th, 2016), S1B BA6C (Aug 11th, 2017), and 

S1B 9006 (Sep 30th, 2017). These images were analysed with 

the Sentinel Application Platform (SNAP) software of the 

European Space Agency. The images were calibrated to reduce 

the speckle noise and to correct the terrain, to make possible to 

obtain the backscattering coefficient of all of them (Mondini, 

2017). The backscattering coefficient represents the amplitude 

of the wave, which takes extremely high values, for that reason 

it was very important to convert the values to decibels (dB) 

(Richards, 2009). After having the backscattering coefficient, 

another software called R software environment (http://www.r-

project.org/) was used to create a boxplot figure (Figure 2) 

showing the differentiation of the polarisations of every image. 

Similarly, another boxplot figure (Figure 3) was created to 

compare the landslides backscattering coefficient and the 

backscattering coefficient of all images. This was similar to 

backscatter analysis used by Mahdianpari et al. (2017). 

3.1.2 Quad Pol 

We processed an L-band UAVSAR image (Rosen et al., 2006) 

of the Purace Volcano (Colombia), acquired in March 13, 2015, 

in the free access software PolSAR pro v.5.0. First, the 

coherence matrix (T3) was obtained (Shibayama et al., 2013)), 

that later generated the decomposition of the Alpha, Entropy 

and Anisotropy images that were needed after to proceed with 

the unsupervised H/a/lambda decomposition (Li et al., 2017), 

this decomposition gave the classification of 27 classes showed 

in a plane (Figure 6). 

Dispersion mechanisms are quantifying by coding radar signal 

in a matrix of dispersion (Eq 1). Nine elements of T3 matrix are 

calculated for each pixel on image. 

 𝑇3 

=  

  𝑆𝐻𝐻 + 𝑆𝑉𝑉 
2   𝑆𝐻𝐻 + 𝑆𝑉𝑉  𝑆𝐻𝐻 − 𝑆𝑉𝑉 

∗ 2  𝑆𝐻𝐻 + 𝑆𝑉𝑉 𝑆𝐻𝑉
∗  

  𝑆𝐻𝐻 − 𝑆𝑉𝑉  𝑆𝐻𝐻 + 𝑆𝑉𝑉 
∗   𝑆𝐻𝐻 − 𝑆𝑉𝑉 

2 2  𝑆𝐻𝐻 − 𝑆𝑉𝑉 𝑆𝐻𝑉
∗  

2 𝑆𝐻𝑉 𝑆𝐻𝐻 + 𝑆𝑉𝑉 
∗ 2 𝑆𝐻𝑉 𝑆𝐻𝐻 − 𝑆𝑉𝑉 

∗ 4  𝑆𝐻𝑉 
2 

  

(1) 

By polarimetric decomposition a set of parameters are obtained 

to classify dispersion mechanisms. Eigen values and eigen 

vectors were derivate from T3 matrix as shown in Equation 2 

(Eq 2) and Equation 3 (Eq 3) (Yonezawa et al., 2012). 

 (2) 

 (3)

 𝑈3 =  

cos𝛼1 cos𝛼2 cos𝛼3
sin𝛼1 cos𝛽1 𝑒

𝑖𝛿1 sin𝛼2 cos𝛽2 𝑒
𝑖𝛿2 sin𝛼3 cos𝛽3 𝑒

𝑖𝛿3

sin𝛼1 sin𝛽1 𝑒
𝑖𝛾1 sin𝛼2 sin𝛽2 𝑒

𝑖𝛾2 sin𝛼3 sin𝛽3 𝑒
𝑖𝛾3

  

 

Eigen values () are used to calculate entropy (H) which is 

function of noise due to the polarisation, Equation 4. 

 

 

     

Eigen vectors contain  parameter representing the dominant 

dispersion mechanism Equation 5, isotropic surface ( =0°), 

dipole volume ( =45°) and isotropic dihedral ( =90°). 
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3.1.3 Weight of Evidence (WofE) and Logistic Regression 

analysis 

Using Spatial Data Modeller Extension for ArcView and Spatial 

Analysis (ArcSDM) of Arc View GIS 3.2 (Kemp et al., 2001), 

the weights of evidence (Neuhäuser et al., 2007) and logistic 

regression (Eker et al., 2016) were run. We obtained the 

strength of each SAR parameter for predicting landslide 

susceptibility and a model of landslide probability was obtained 

by binary logistic regression.  

3.2 Data 

Main characteristics of L1 radar images are in Table 1. 

UAVSAR images have longer wavelength and better spatial 

resolution and four polarisations. 

Radar 

image 
Band/ SR 

(m) 

GRD image PolSAR 

Sentinel-1 

(ascending 

orbit) 

C/6 cm 14 

S1A1C60(20150512) VH/VV 

S1B2EDC (20161120)  

S1B9006 (20170730)  

S1BBA6C (20170811)  

UAVSAR L/27 cm 6 

ColVol_31800_15019_ 

006_150313_L090_ 

CX_01 (20150313) 

VH/VV 

/HV/HH 

Table 1. Characteristics of Sentinel-1 and UAVSAR images 

 

4. STUDY AREA 

 
Figure 1. Study area. 

 

The study area is a rectangle with the WGS84 coordinates of 

02°09’36.66” North, 76°47’38.79” West and 02°28’11.91” 

North, 76°27’56.38” West, with an area of 45 km x 30 km 

(1350 km2). This zone is in south-eastern Colombia (Figure 1). 

The Mass Movement Information System (SIMMA) of 

Colombian Geological Service provided a database of 

landslides with 181 events of inventory and 248 events of 

catalogue type. The first inventory had a landslide distribution 

of 20,4% of fall, 71,3% of slide, 4,4% of reputation, 3,3% of 

flow and 0,6% of lateral spread. The zone is located into a 

transect which contains heights between 1004 and 3698 m on 

the Andes mountains. 

5. RESULTS 

5.1 Dual Pol 

5.1.1 Overall distribution of backscatter 

Using dual-pol, we found the backscatter calibration 

coefficients for four GRD Sentinel-1 radar images acquired on 

the dates 5th Dec 2015, 20th Nov 2016, 30th July 2017 and 

11th Aug 2017. The acquisition time interval varies from 351, 

252 and 12 days respectively. The boxplot (Figure 2) gave 

information about the distribution of calibrated backscatter in 

separate times and dual-polarisation. The overall distribution of 

backscatter is as follows: for VH polarisation, an overall range 

between -22,24 dB and -3,21 dB, an average median about -15 

dB was found. In relation to VV polarisation, the range varied 

between -18,68 dB and 3,17 dB. The average median is about -

9,27 dB. These values indicate that the dominant scattering 

mechanism is the surface dispersion on opened areas. On the 

other hand, the backscatter calibration distribution has positive 

asymmetry where there are high values with low frequency. VH 

and VV C-band polarisation in VH2EDC, VH9006 y VHBA6C 

radar images, showed no significant differences between the 

backscatter mean values, (p-value > 0,05). The highest 

correlation was found between VH2EDC and VH9006 GRD 

radar images (r=0,91 for VH and r=0,94 for VV polarisation).  

 

Figure 2. Backscatter of all ground scatters 

5.1.2 Specific distribution of landslide backscatter 

The following figure (Figure 3) showed the changes of 

calibrated backscatter of landslides, over a period of two years. 

S1B-ABA6C radar image did not appear because it did not 

cover the region within the landslides database. By the T-Test, 

we demonstrated the equality of means (p-value > 0,05) in the 

three GRD radar images. In VH polarisation, landslides emit a 

calibrated backscatter between -19,30 to -8,80 dB, with a 

median of -14.47 dB. This interval increased from -14,15 to -

0,51 dB, with a median of -8,25 dB for VV polarisation. In 

overall terms, the average backscattering coefficient 

corresponds to -14,47 dB for VH polarisation and -8,46 dB VV 
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polarisation. The distribution of VH polarisation is more 

homogenous than VV polarisation (CVVH=15,3% against 

CVVV=31,3%).  Both VH and VV distributions, reported a low 

positive skewness (0,20 and 0,35), with some outliers in the 

upper region of the distribution.  

 

Figure 3. Backscatter over landslide scatters 

5.1.3  Weight of evidence (WofE) analysis 

Two GRD L1 radar images were selected (S1A-1C60, S1B- 

9006) because they covered most of the landslide distribution 

zone. Using ArcView GIS 3.2, an WofE analysis and logistic 

regression (LR) was performed.  The most representative results 

were found in the S1A-1C60 GRD L1 image of May 12th, 

2015. The figure 4, presents the posterior logistic regression 

probability where GRD L1 image covered the major part of 

local landslides. Although, the maximum probability in the 

landslides susceptibility map is about 0,43, the results showed 

concordance with spatial distribution with landslide inventory. 

 

Figure 4. LR Posterior Probability obtained with S1-1C60 GRD 

L1 DualPol 

The binary logistic regression is expressed in a math way as it´s 

indicated in the following equation: 

(6)  

The VH backscatter calibrated of -16,67 dB to -15,0 dB has the 

highest Studentized contrast (stud(C)) (Table 2) which indicated 

that this BS category is more susceptible to landslides. The VV 

backscatter calibrated between -10,17 dB and -7,97 dB gave the 

highest Studentized contrast (stud(C)) (Table 3) which indicates 

that this BS category is more susceptible to landslides in this 

polarimetry. 

 

Class BS #LS W+ W- C S(C) Stud(C) 

1 -18,3 / -16,7 6 0,12 -0,01 0,13 0,46 0,29 

2 -16,7 / -15,0 19 0,38 -0,12 0,50 0,29 1,71 

3 -15,0 / -13,4 16 -0,25 0,10 -0,35 0,30 -1,15 

4 -13,4 / -11,7 15 -0,03 0,01 -0,04 0,31 -0,12 

5 -11,7 / -10 7 -0,03 0,004 -0,04 0,42 -0,09 

6 -10 / 8,4 4 0,47 -0,02 0,49 0,56 0,87 

Table 2. Spatial relationship between landslide VH-BS and 

SIMMA landslide inventory. 

Class BS #LS W+ W- C S(C) Stud(C) 

1 -12,4 / -10,2 7 0,32 0,05 0,36 0,42 0,87 

2 -10,2 / -8,0 26 0,29 -0,15 0,44 0,27 1,66 

3 - 8,0/ -5,8 19 -0,05 0,02 -0,08 0,29 -0,26 

4 -5,8 / -3,6 10 -0,01 0,002 -0,01 0,36 -0,04 

5 -3,6 / -1,4 4 0,11 -0,006 0,11 0,55 0,20 

6 -1,4 / 0,9 1 0,05 -0,001 0,05 1,07 0,04 

Table 3. Spatial relationship between landslide VV-BS and 

SIMMA landslide inventory. 

The intervals found by logistic regression with greater 

association to the landslides corresponds to the outlined 

tendency measures of the backscatter distributions, especially in 

the VV polarization. 

The median values, found for both polarisation, were located 

between the lowest backscatter values for water coverage (-20 

dB for C-band HH and -23 dB for C-band HV) and highest 

backscatter values for urban class (0 dB for HH polarized data). 

Furthermore, upland class had a median about -10 dB in C-

band. Those were investigated by Mahdianpari et al., (2017). 

5.2 Quad-polarisation data 

The objective of using fully polarimetric SAR data from 

UAVSAR airborne sensor, is to evaluate the effect of 

polarimetric descriptors on landslides classification. 

5.2.1 Entropy – alpha parameter decomposition 

Figure 5, shows the first plane of principal components analysis 

for Entropy – Alpha angle parameters obtained by Cloude-

Pottier decomposition (Cloude et al., 1997), which measures 

and transforms the information of ground targets into 

deterministic targets (Mahdianpari et al., 2018). The parameters 

correctly represented in the first factorial plane of PCA analysis 
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are: entropy (H), alpha angle () and anisotropy (A). Alpha 

angle () and entropy (H) parameters had a correlation 

coefficient of about 0,73. Anisotropy in comparison with 

combination of Entropy-alpha classification also had a high 

relationship of about 0,85. This multivariate behaviour explains 

the use of unsupervised classification scheme for identifying the 

dominant scattering mechanism, based on entropy–alpha values 

(Cloude et al., 1997). 

 

Figure 5. First factorial plane of principal component analysis 

for Quad-Pol parameters. 

5.2.2 Full PolSAR classification scheme 

Figure 6, shows the results of H- decomposition for all 

scatters existing on the study area. In general, most scatters 

correspond to the surface and volume diffusion mechanism.  

 

Figure 6. H-alpha distribution, using all scatters. 

Table 4 shows the H-decomposition distribution 

corresponding only to landslides scatterers. Exactly 14,6% 

corresponds to the double reflection propagation effects (zone 

4: medium entropy multiple scattering), 42,7% of anisotropic 

particles (zone 5: medium entropy vegetation scattering), and 

34,1% of the random surface (zone 6: medium entropy surface 

scatter). Most landslides are classified in anisotropic particles 

which would include scattering from vegetated surfaces; others 

are characterized as random surface because the entropy 

increases due to canopy propagation effects (Cloude et al., 

1997). These events are rotational, translational slides, and a 

few detritus falls, but if being a random surface class, most 

landslides types correspond to translational slides. Double 

reflection propagation is characterized by translation and 

rotational slides in equal proportion. 

H- class LS number Percentage (%) Classification 

4 12 14,6 Double reflection 

propagation effects 

5 35 42,7 Anisotropic particles 

6 28 34,1 Random surfaces 

8 3 3,7 Dipole 

9 4 4,9 Bragg surface 

Table 4. Categories of H-alpha classification for all scatters. 

The figure 7, shows the spatial distribution of landslide 

classification according to the alpha parameter. The results 

showed that the scatter mechanism has the following 

distribution: 39% for surface scattering, 46.4% for volume 

diffusion, and 14.6% for double bounce scattering. 

 

 

Figure 7. Landslides mechanism of dispersion using H-alpha 

classification. 

The aforementioned means that the landslides does not always 

reflects surface scattering clearly, so surface and volume 

scattering can change in relation to variation of the observed 

geometries, as stated by Shibayama et al., (2015). 

5.2.3 Landslide susceptibility with Quad-Pol parameters 

To find a relationship between Quad-pol parameters and 

landslide events a regression analysis with binary logistic 

regression was performed. First, one WofE analysis was run 

using ArcView Gis 3.2 to obtain a value range with higher 
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relationship to landslides. Table 5 shows the main WofE values 

for some Quad-pol parameters. The most significant quad-pol 

parameters were: H-A-Lambda classification (Studentized 

contrast of 4.37, 2.94 and 3.29).   

QuadPol parameter Range 

Studentized 

contrast of 

WofE method 

Alpha 5,145 – 12,985 1.89 

Anisotropy 0,10 – 0,20 1.32 

Combination 1mH1mA1 0,09 – 0,18 1.01 

Combination 1mHA1 0,44 – 0,53 1.23 

Combination H1mA1 0,39 – 0,48 1.96 

Combination HA 0,26 – 0,33 1.31 

Entropy 0,60 – 0,70 1.98 

H-A-Lambda  3,6 – 6,2 4.37 

H-A-Lambda class 1 5,4 – 6,3 2.94 

H-A-Lambda class 2 0 – 1,8 3.29 

H-A-Lambda class 3 24,3 – 27,0 1.03 

Table 5. Studentized contrast of the WofE method for more 

representative parameters. 

Alpha angles values between 5° and 13° with Entropy values 

between 0.6 and 0.7, corresponds to Zone 6 of SAR 

classification scheme of Cloude & Pottier (1997) where the 

surface cover have oblate spheroidal scatterers such as canopy. 

Several maps with logistic regression posterior probability were 

obtained by different alternatives (Table 6). The 6th alternative 

with QuadPol parameters (Anisotropy, Combination 

(1mH1mA1, 1mHA1, H1mA1, HA), Entropy) gave the highest 

odd range, and a conditional independence ratio of 0.93, 

demonstrating the independence of the variables. However, the 

landslide susceptibility was very low by analysing only quadpol 

parameters. Despite of having a high spatial resolution with 

UAVSAR images for quadpol analysis, these results didn´t 

show a meaningful relationship to landslides. 

Alternative 
QuadPol parameters 

involved 

Conditional 

Independence 

Ratio 

Odds 

range of 

LR 

posterior 

probability 

1 Alpha, Anisotropy, 

Entropy 

1 0.004 – 

0.024 

2 H-Alpha-Lambda 

classification (Class 0, 1, 

2, 3) 

0.56 0.009 – 

0.058 

3 Combination (1mH1mA1, 

1mHA1, H1mA1, HA) 

0.98 0.010 – 

0.039 

4 Alpha, Anisotropy, 

Combination (1mH1mA1, 

1mHA1, H1mA1, HA), 

Entropy 

0.92 0.001 – 

0.085 

5 Alpha, Entropy,  1 0.004 – 

0.023 

6 Anisotropy, Combination 

(1mH1mA1, 1mHA1, 

H1mA1, HA), Entropy 

0.93 0.003 – 

0.086 

7 Anistropy, Combination 

1mH1mA1, Entropy 

0.98 0.008 – 

0.034 

Table 6. Results of LR posterior probability for QuadPol 

parameters. 

 

6. CONCLUSIONS 

Using C-band Sentinel-1 radar images, spanning the period 

from May 2015 to September 2017, it was possible obtain a first 

preliminary characterization of landslides based on its 

backscatter coefficient. VH and VV C-band polarised radar 

energy emits median values of BS, for landslides, about of -

14.47 dB for VH polarisation and -8.46 dB for VV polarisation. 

Using airborne L-band fully polarimetric UAVSAR data, with 

four polarisations, the mechanism of dispersion was found. This 

mechanism for landslides inventory provided by CGS landslide 

inventory was: 39% for surface scattering, 46.4% for volume 

dispersion and 14.6% for double bounce scattering. In 

opposition to our expectations of landslides only emitting 

backscattered energy through the surface mechanism, these 

results imply a bigger refinement in the analysis considering the 

geometric parameter of the radar measurement (angle of 

incidence) to establish this effect. However, through binary 

logistic regression, a good relation was found between low 

values of the alpha angle (5 ° to 12 °) and intermediate values of 

entropy (0.6 to 0.7), which correspond to zone 6, of the non-

supervised classification scheme by Cloude and Pottier.  

Because the C-band and L-band L1-SAR images were acquired 

in different years than the landslides inventory report, is 

necessary to follow this preliminary investigation, by using of a 

multi-temporal approach with images closer to the dates of 

occurrence of the events, and thus establishing the accuracy of 

the classifications obtained with the PolSAR. 

REFERENCES 

Adiri, Z., El Harti, A., Jellouli, A., Lhissou, R., Maacha, L., 

Azmi, M., … Bachaoui, E. M. (2017). Comparison of 

Landsat-8, ASTER and Sentinel 1 satellite remote 

sensing data in automatic lineaments extraction: A case 

study of Sidi Flah-Bouskour inlier, Moroccan Anti Atlas. 

Advances in Space Research, 60(11), 2355–2367. 

https://doi.org/10.1016/j.asr.2017.09.006 

Casagli, N., Frodella, W., Morelli, S., Tofani, V., Ciampalini, 

A., Intrieri, E., … Lu, P. (2017). Spaceborne, UAV and 

ground-based remote sensing techniques for landslide 

mapping, monitoring and early warning. 

Geoenvironmental Disasters, 4(9), 1–23. 

https://doi.org/10.1186/s40677-017-0073-1 

Cloude, S., & Pottier, E. (1997). An entropy based 

classification scheme for land applications of 

polarimetric SAR. IEEE Transactions on Geoscience and 

Remote Sensing, 35(1), 68–78. 

https://doi.org/10.1109/36.551935 

Colesanti, C., & Wasowski, J. (2006). Investigating landslides 

with space-borne Synthetic Aperture Radar (SAR) 

interferometry. Engineering Geology, 88(3–4), 173–199. 

https://doi.org/10.1016/j.enggeo.2006.09.013 

Eker, R., & Aydin, A. (2016). Landslide Susceptibility 

Assessment of Forest Roads *, 2(November), 54–60. 

García-Davalillo, J. C., Herrera, G., Notti, D., Strozzi, T., & 

Álvarez-Fernández, I. (2014). DInSAR analysis of ALOS 

PALSAR images for the assessment of very slow 

landslides: The Tena Valley case study. Landslides, 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W4, 2018 
GeoInformation For Disaster Management (Gi4DM), 18–21 March 2018, Istanbul, Turkey

This contribution has been peer-reviewed.    
https://doi.org/10.5194/isprs-archives-XLII-3-W4-177-2018 | © Authors 2018. CC BY 4.0 License.

 
183



11(2), 225–246. https://doi.org/10.1007/s10346-012-

0379-8 

Han, D., Vahedifard, F., & Aanstoos, J. V. (2017). Investigating 

the correlation between radar backscatter and in situ soil 

property measurements. International Journal of Applied 

Earth Observation and Geoinformation, 57, 136–144. 

https://doi.org/10.1016/j.jag.2016.12.018 

Kemp, L. D., Bonham-Carter, G. F., Raines, G. L., & Looney, 

C. G. (2001). Arc-SDM: Arcview extension for spatial 

data modelling using weights of evidence, logistic 

regression, fuzzy logic and neural network analysis. São 

Paulo: Instituto de Geociências, Universidade Estadual 

de Campinas. Retrieved from 

http://www.ige.unicamp.br/sdm/ 

Li, D., & Zhang, Y. (2017). Random Similarity-Based 

Entropy/Alpha Classification of PolSAR Data. IEEE 

Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing, 10(12), 5712–5723. 

https://doi.org/10.1109/JSTARS.2017.2748234 

Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Brisco, 

B., Mahdavi, S., Amani, M., & Granger, J. E. (2018). 

Fisher Linear Discriminant Analysis of coherency matrix 

for wetland classification using PolSAR imagery. Remote 

Sensing of Environment, 206(October 2017), 300–317. 

https://doi.org/10.1016/j.rse.2017.11.005 

Mahdianpari, M., Salehi, B., Mohammadimanesh, F., & 

Motagh, M. (2017). Random forest wetland classification 

using ALOS-2 L-band, RADARSAT-2 C-band, and 

TerraSAR-X imagery. ISPRS Journal of 

Photogrammetry and Remote Sensing, 130, 13–31. 

https://doi.org/10.1016/j.isprsjprs.2017.05.010 

Matikainen, L., Lehtomäki, M., Ahokas, E., Hyyppä, J., 

Karjalainen, M., Jaakkola, A., … Heinonen, T. (2016). 

Remote sensing methods for power line corridor surveys. 

{ISPRS} Journal of Photogrammetry and Remote 

Sensing, 119, 10–31. 

https://doi.org/http://dx.doi.org/10.1016/j.isprsjprs.2016.

04.011 

Mondini, A. (2017). Measures of Spatial Autocorrelation 

Changes in Multitemporal SAR Images for Event 

Landslides Detection. Remote Sensing, 9(6), 554. 

https://doi.org/10.3390/rs9060554 

Neuhäuser, B., & Terhorst, B. (2007). Landslide susceptibility 

assessment using “weights-of-evidence” applied to a 

study area at the Jurassic escarpment (SW-Germany). 

Geomorphology, 86(1–2), 12–24. 

https://doi.org/10.1016/j.geomorph.2006.08.002 

Notti, D., Davalillo, J. C., Herrera, G., & Mora, O. (2010). 

Assessment of the performance of X-band satellite radar 

data for landslide mapping and monitoring: Upper Tena 

Valley case study. Natural Hazards and Earth System 

Science, 10(9), 1865–1875. 

https://doi.org/10.5194/nhess-10-1865-2010 

Ouchi, K. (2013). Recent trend and advance of synthetic 

aperture radar with selected topics. Remote Sensing, 5(2), 

716–807. https://doi.org/10.3390/rs5020716 

Plank, S., Twele, A., & Martinis, S. (2016). Landslide Mapping 

in Vegetated Areas Using Change Detection Based on 

Optical and Polarimetric SAR Data. Remote Sensing, 

8(4), 307. https://doi.org/10.3390/rs8040307 

Richards, J. a. (2009). Remote Sensing with Imaging Radar. 

Canberra: Springer. https://doi.org/10.1007/978-3-642-

02020-9 

Rocca, F., & Ferretti, A. (2014). An Overview of SAR 

Interferometry, 1–13. Retrieved from 

https://earth.esa.int/workshops/ers97/program-

details/speeches/rocca-et-al/ 

Rosen, P., Hensley, S., Wheeler, K., Sadowy, G., Miller, T., 

Shaffer, S., … Madsen, S. (2006). UAVSAR: a new 

NASA airborn SAR system for science and technology 

research. Proc. 2006 {IEEE} Conf. on Radar, 22–29. 

Scaioni, M., Longoni, L., Melillo, V., & Papini, M. (2014). 

Remote Sensing for Landslide Investigations: An 

Overview of Recent Achievements and Perspectives. 

Remote Sensing, 6(7), 5909–5937. 

https://doi.org/10.3390/rs60x000x 

Shibayama, T., & Yamaguchi, Y. (2013). AN APPLICATION 

OF POLARIMTRIC RADAR ANALYSIS Graduate 

School of Science and Technology , Niigata University , 

Japan. International Geoscience and Remote Sensing 

Symposium (IGARSS), (1), 3191–3194. 

Shibayama, T., Yamaguchi, Y., & Yamada, H. (2015). 

Polarimetric scattering properties of landslides in 

forested areas and the dependence on the local incidence 

angle. Remote Sensing, 7(11), 15424–15442. 

https://doi.org/10.3390/rs71115424 

Shimada, M., Itoh, T., Motooka, T., Watanabe, M., Shiraishi, 

T., Thapa, R., & Lucas, R. (2014). New global 

forest/non-forest maps from ALOS PALSAR data (2007-

2010). Remote Sensing of Environment, 155, 13–31. 

https://doi.org/10.1016/j.rse.2014.04.014 

Sun, W., Tian, Y., Mu, X., Zhai, J., Gao, P., & Zhao, G. (2017). 

Loess Landslide Inventory Map Based on GF-1 Satellite 

Imagery. Remote Sensing, 9(314), 1–17. 

https://doi.org/10.3390/rs9040314 

Tansey, J., & Millington, A. C. (2001). Investigating the 

potential for soil moisture and surface roughness 

monitoring in drylands using ERS SAR data. 

International Journal of Remote Sensing, 22(11), 2129–

2149. https://doi.org/10.1080/01431160121099 

Tehrany, M. S., Kumar, L., & Drielsma, M. J. (2017). Review 

of native vegetation condition assessment concepts, 

methods and future trends. Journal for Nature 

Conservation. https://doi.org/10.1016/j.jnc.2017.08.004 

Tessari, G., Floris, M., & Pasquali, P. (2017). Phase and 

amplitude analyses of SAR data for landslide detection 

and monitoring in non-urban areas located in the North-

Eastern Italian pre-Alps. Environmental Earth Sciences, 

76(2), 85. https://doi.org/10.1007/s12665-017-6403-5 

Vogeler, J. C., & Cohen, W. B. (2016). A review of the role of 

active remote sensing and data fusion for characterizing 

forest in wildlife habitat models. Spanish Association of 

Remote Sensing, 45, 1–14. 

Wilson, J. P. (2012). Digital terrain modeling. Geomorphology, 

137(1), 107–121. 

https://doi.org/10.1016/j.geomorph.2011.03.012 

Yague-martinez, N., Prats-iraola, P., Member, S., Gonzalez, F. 

R., Brcic, R., Shau, R., … S-, A. S.-. (2016). 

Interferometric Processing of Sentinel-1 TOPS Data. 

IEEE Transactions on Geoscience and Remote Sensing, 

54(4), 2220–2234. 

Yonezawa, C., Watanabe, M., & Saito, G. (2012). Polarimetric 

decomposition analysis of ALOS PALSAR observation 

data before and after a landslide event. Remote Sensing, 

4(8), 2314–2328. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W4, 2018 
GeoInformation For Disaster Management (Gi4DM), 18–21 March 2018, Istanbul, Turkey

This contribution has been peer-reviewed.    
https://doi.org/10.5194/isprs-archives-XLII-3-W4-177-2018 | © Authors 2018. CC BY 4.0 License.

 
184




