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ABSTRACT: 

 

This paper introduces a practical way to improve the risk management capacity and resilience of communities by utilizing a prompt 

flash flood map produced from very high spatial resolution ALOS-2 data. An improved flood detection algorithm is proposed to 

achieve a better discrimination capacity to identify flooded areas in the valley floodplain based on cluster analysis by verifying 

training sites and understanding pixel-based backscattering behaviour focusing on surface roughness changes caused by floodwater 

and floating debris, i.e., mud flow with gravels, stones and uprooted trees. The results show the possibility of a rapid, straightforward 

change detection approach to flood mapping, in particular to identify and classify floodwaters, damaged buildings, damaged rice 

fields, and stacks of driftwood through evidenced-based investigation. 
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1. INTRODUCTION 

1.1 Background 

Japan continually suffers intensive damage from natural 

disasters, such as earthquakes, landslides, and floods. Despite 

the Japanese government’s strategic efforts under a national 

framework to mitigate disaster risk, many local governments 

have not been able to increase risk management capacity, and 

had a hard time implementing effective ways to mitigate disaster 

risk and enhance risk resilience. The improvement of risk 

management capacity and resilience of communities has been 

recognized as a priority issue for the Japanese government.  

 

Earth observation-based disaster emergency response is one of 

the best and powerful tools for better disaster monitoring and 

risk management. Utilizing the advantages of optical and 

satellite synthetic aperture radar (SAR) sensors, satellite 

applications should be designed to maximize sensor capabilities 

(Kwak, 2017). In particular, SAR is superior to optical sensors 

in detecting flood inundation areas, because of a high spatial 

resolution with near-all-weather and all-day operating 

capabilities. For example, when a flash flood occurred in a 

valley-bottom stream surrounded by mountains, optical sensors 

cannot detect in time inundated and damage areas accurately 

due to a typhoon with torrential rain and cloud.  

 

As the Japan Aerospace Exploration Agency (JAXA) is carrying 

out emergency operation using the single polarization (HH) 

with a ultra-fine mode (UBS: SM1) as the highest priority 

mode, single-polarization processes play a very important role 

in emergency response to provide prompt risk information, i.e., 

flood maps. In line with this emergency strategy, flash flood 

mapping based on information from SAR is an only way to 

deliver risk information right after flooding, despite low 

accuracy due to difficulties in pre-processing and interpreting 

SAR images. When it comes to determining the evacuation time 

and issuing early warnings, rapid flood mapping is one of the 

most important components in emergency response right after 

flooding, in particular to figure out and report overall flood risk 

and flood damage status to decision makers and stakeholders, 

such as local agencies, risk managers, civilians living in risk 

zones. Therefore, the Japanese government strongly request 

JAXA to utilize and maximize Advanced Land Observing 

Satellite-2 (ALOS-2) application. The prompt mapping 

products of flash flood with maximum inundation extent are a 

core component to assess physical flood risk in order to 

understand overall flood situation. In addition, rapid flood maps 

produced from very high spatial resolution ALOS-2 images 

(i.e., 3 meters) can be useful resources to learn high-risk flood 

zones (hotspots) from a record-braking flood event in order to 

improve resilience of communities. Besides the flood mapping 

accuracy associated with prompt processing (based on 

insufficient ground validation and model calibration), prompt 

flood detection is a sequential process to estimate flood risk 

proxy such as human losses and economic losses, i.e., building 

and infrastructure damages and agricultural damages. The 

prompt proxy mapping of flood risk will be provided rapidly in 

any weather condition for any place in a floodplain as well as in 

a mountainous valley-stream network.  

 

1.2 Objective 

To improve the flood algorithm and the accuracy of flash flood 

mapping from very high spatial resolution ALOS-2 data, this 

study investigated the characteristics of backscattering changes 

on the double bounce effect, which is affected by floodwater 

surface and surface roughness. In this paper, a new flood 

detection algorithm was employed to produce a prompt flood 

map focusing on surface roughness changes induced from 

floodwater and floating debris, i.e., mud flow with gravels, 

stones and uprooted trees in the case of the 2016 Omoto River 

flood in a valley-bottom plain in Japan. In general, a flood 

detection algorithm considering only the behaviour of water 
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surface backscatter cannot discriminate flood-affected pixels 

accurately from flood damage areas; however, the new 

algorithm is designed to detect damage areas from building 

areas, rice paddy fields, and floodplain areas after the flood has 

receded. The main concern is to determine optimal criteria as 

global split-threshold from variation in backscattering intensity 

on surface complexity in verified training sites. The proposed 

algorithm can support emergency flood disaster response so that 

a local community will be able to implement evidence-based 

operational flood risk management.  

 

2. STUDY AREA AND DATA SET  

2.1 Study Area 

On August 30, 2016, a strong typhoon No. 10 hit northeastern 

Japan with a record-breaking rainfall of 62.5 mm/h (250 

mm/day). Many landslides and floods occurred mainly along 

valley-bottom streams in granitic and slate watersheds, 

accompanied by landslides (debris flows) and floating debris, 

i.e., trees uprooted from a thin surface soil layer on the granitic 

hill slope about 0.5 m thick. Iwate Prefecture (2016), the most 

damaged Prefecture in Japan, reported that the typhoon caused 

economic losses as much as 1.3 billion dollars in damage, 

damaged 2700 buildings, and left 21 dead and 4 missing, which 

made the disaster the worst in history. A representative station 

of the Omoto River reported that the record-breaking river 

water level, the flood peak, exceeded the levee height, reaching 

7 meters at 20:00 p.m., August 30, 2016 (Japan time). The 

Omoto River was selected as the pilot study, a valley-bottom 

stream about 65 km long with a basin area of 731 km2. It is 

managed by Iwate Prefecture, and 75% (11000 km2) of its 

surrounding area is covered by forests. Figure 1a shows ALOS 

User Interface Gateway (© AUIG 2016, JAXA) for officially 

registered end users to request acquired ALOS data. The 

selected study area, which lies between latitude 39.825°–

39.858°N and longitude 141.75°–141.99°E, covers the area 

from the valley floodplain to the river mouth of the Omoto 

River (indicated in the white box on yellow antenna’s footprint) 

in Figure 1b. 

 
Figure 1. ALOS User Interface Gateway (© 2016 ALOS-2 

Image Copyright, JAXA) and selected study area (© 2018 

Google) 

 

  

2.2 Data Used 

Under the emergency observation rules, JAXA successfully 

acquired very high spatial resolution (SM1) L-band SAR 

(PALSAR-2) data and released a processing level of 3.1 

(geocoded in map projection, UTM zone 54 north, Ellipsoid: 

WGS84). The author mainly used multi-look complex data 

acquired before and after the flood at 22:56 p.m. (Japan time) 

on November 12, 2015, and July 31 and September 1, 2016. 

Table 1 shows employed ALOS-2 data on the area in antenna’s 

footprint in the red rectangular (Figure1a) with three different 

time acquisitions provided from AUIG (ALOS-2/ALOS User 

Interface Gateway © ALOS-2 Image 2016, JAXA). Next, for 

investigating pre-flood ground roughness, the precise digital 

elevation model (DEM) data was collected by the airborne 

LiDAR (Laser Imaging Detection and Ranging) and released by 

the Geographical Information Authority of Japan (GSI). The 

LiDAR-based DEM has a five-meter spatial resolution with 

centimetre height resolution. For the validation of flood areas, 

ground truth data were collected by conducting field survey, 

and air-photo images were sUAV-captured after the flood on 

September 11, 2016 (©GSI) and by the author on November 29, 

2017, one year after the restoration of rice paddy fields in the 

valley floodplain. 
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 ALOS-2 

 Pre-flood Post-flood 

Acquisition date 

(UTC) 

13:56 

12Nov.2015 

13:56 

09Jun.2016 

14:24 

01Sep.2016 

Azimuth Ascending right 

Angle 32.8 

Polarization HH 

Resolution 3 meters 

Path&Beam  123, 790 

 Processing level 3.1(UBSR3.1RUA) 

Resampling=NN 

Table 1. ALOS-2 data used  

 

3. EXPERIMENTAL FLOOD DETECTION 

3.1 Pre-processing SAR images for change detection 

To eliminate speckle noises and geometric distortions including 

layover and shadow errors, DEM-derived masking was 

employed to eliminate the over 50-meter elevation from the 

target areas in the valley floodplain. An adaptive smoothing 

filter process was tested for surpassing change detection using 

the advanced Lee filter and the local-mean filter with a moving 

window while preserving pixel information relying on surface 

complexity. The experimental coinciding ALOS-2 amplitude 

images were superimposed with DEM and related GIS data, 

both of which are created with reference to Japanese Geodetic 

Datum 2011 (JGD 2011) based on Geodetic Reference System 

1980 (GRS1980).  

 

3.2 Statistical split-threshold method  

3.2.1 Supervised Classification: Supervised cluster 

classification was applied to categorize land-cover classes of 

flooded areas as a statistical analysis of temporal backscatter 

variation for spatio-temporal change detection from three 

ALOS-2 images. Figure 2 shows a classification tree based on 

decision-tree learning as a predictive model using the pixel-

based backscatter variation of the training sites. The training 

sites were sorted into five classes: floodwater, floating debris 

(i.e., stacks of driftwood), rice fields (with inundation, damage, 

or no damage), buildings (with damage or no damage), and 

open spaces. This categorization was to analyse the 

characteristics of a pixel-based backscattering behaviour right 

after the flood when surface roughness change due to flash 

floodwater. 

 

 

Figure 2. Classification tree using a decision tree learning for 

prompt flash flood mapping 

 

3.2.2 Histogram Threshold method: The statistical 

threshold-based approach is one of the conventional methods 

for flood mapping using optical and SAR data. A statistical 

thresholding algorithm of the backscatter distribution using 

probability density function (PDF) was employed to 

discriminate flood inundation areas according to five land-cover 

classes. The statistical threshold-based method is important to 

understand the accurate statistical split-threshold models as a 

preliminary step in the development of statistical tools. The 

statistical thresholding algorithm using PDF neglected and 

enhanced specific characteristics of flood distribution of class 

objects and its background such as a surrounding speckle noise.  

 

Regarding the statistical thresholding approach, Martinis et al. 

(2011) have shown unsupervised extraction of flood-induced 

backscatter changes using SAR Data for an operational flood 

mapping. Kwak et al. (2017) have introduced PDF-based flood 

change detection considering double bounce effect for rapid 

urban flood mapping using ALOS-2/PALSAR-2 in the 2015 

Kinu River flood in Japan.  

 

PDF of the backscatter intensity was estimated using Equation 

(1) by taking the median value ( m ) and variance (s ) of each 

pixel.  
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where  x = pixel values of backscatter (dB) 

 m  = median value of x 

 s  = variance of x 

 

The effect of PDF-based backscatter variation proposed the 

criteria of global threshold according to the following four types 

of the supervised classification:   

Significant decrease Significant increase 

Moderate decrease Moderate increase 

 

3.3 Spatio-temporal Change Detection 

After determining the optimized global threshold of the tested 

five classes, pixel-based change detection was applied to 

discriminate each class variation, i.e., clustering, using Otsu’s 

method (Otsu, 1979). For flash flood mapping, the mechanism 

of the double bounce effect was mainly considered when a 

ground roughness was changed by the flash flood. The 

correlation coefficient of the backscatter intensity was estimated 

from pre- and post-flood pixels with changing the window size 

into 9 by 9 pixels (approximately 22~27 meters) in order to 

detect smallest objects such as stacks of driftwood because of a 

tree height is about 20~30 meters. The correlation coefficient 

was calculated (Rignot and Van, 1993), as in (2): 
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where  Ib = the intensity of SAR images before the flood 

 Ia = the intensity of SAR images after the flood 

 Bar notation I = the mean value of their intensity 
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4. RESULTS 

This preliminary study, as an effort in emergency response, 

presented a flash-flood mapping approach to risk management 

for enhancing the risk management capacity and resilience of 

communities. This approach enables a simple, prompt 

statistical-based change detection to identify satellite-detected 

flood inundation areas and damage areas in valley floodplains at 

a reasonable level of accuracy. 

 

4.1 Limitation of pre-processing SAR images 

Although ALOS-2 level 3.1 images are geocoded with quality 

corrections (e.g., noise reduction and dynamic range 

compression), distance errors still remain particularly along a 

river line (JGD 2011). This has been a critical issue to achieve 

highly accurate spatial-data processing since the launch of 

ALOS. The distance error along the river line to the intersecting 

alignment was greater than that to the range direction (west to 

east in Figure 1a), with an error being as great as 70 meters 

(approximately equivalent to over 10 pixels) due to geometric 

distortion. In order to integrate GIS data, distortion error 

correction should be conducted and re-projected accurately by 

means of terrain-corrected and geocoded ALOS-2 data using 

more accurate DEM (©GSI). 

 

4.2 Statistical split-threshold optimization  

In general, the variation of floodwater over a wide-open area 

and flooded rice fields was significantly decreased. There are 

many unexpected and ambiguous backscatter behaviours due to 

various types of surface complexity and heterogeneity; in 

addition, backscattering behaviour varies widely even in the 

same class. In this experimental training site, the representative 

five classes were introduced to describe backscattering 

variations in flood-affected areas as the criteria of global 

threshold shown in Table 2. The difference in backscattering 

intensity of floodwater between pre- and post-flood was 

significantly decreased from 10.0 dB to -20.1 dB due to 

specular reflection from water surface. The maximum difference 

was about 30 dB and the mean value of the difference decreased 

by about -12 dB. On the contrary, the difference in surface 

change, i.e., sand bar and stacks of driftwood from floating 

debris, significantly increased from near 0 dB to + 12.4 dB due 

to double bounce. The maximum difference was about 9.3 dB 

and the median value of the difference increased by about +4.9 

dB. 

 

 
 Increase（μ: dB) Decrease（μ:dB) 

Flooded classes ++ Δ + Δ - Δ -- Δ 

Floodwater   2.5 (+1.9) 12 (- 4.9) 

Building   0.4 (+0.3)   

Sand bar  4.2 (+1.9)   

Drift wood 9.3 (+4.9)     

Paddy field 9.0 (-1.1)   10.4 (- 1.4) 

Table 2. Backscatter characteristic of the selected flood-affected 

classes in training site 

 

As a result of the analysis of surface roughness changes, Figure 

3a shows a geomorphic change on a flat sand bar, which was 

categorized in the paddy field class, at a levee break in this 

study (© 2016, Google). Figure 3b shows ALOS-2 composite 

images in different times before and after the flood (RGB 

composite, Red: pre-flood on Jun 9, 2016, Green: pre-flood on 

December 11, 2015, Blue: post-flood on September 1, 2016 © 

JAXA). The blue and yellow pixels indicated a considerable 

change in backscattering intensity of floodwater and potential 

damage areas. 

Figure 3c shows the sensitivity of backscatter intensity to 

micro-topography undulation on the sand bar. The 

backscattering spreads irregularly in the elevation range of 2.5 

meters between 15.5 m and 18.0 m (the green and red dots in 

Figure 3c). After severe surface change due to the flash flood 

and floodwater, the mean value (the blue dot in Figure 3c) 

showed an overall increase from -1.8dB to 2.4 dB. In addition, 

Figure 3d shows the PDF-based backscatter variation 

interpreted by surface roughness change. Despite of the various 

backscattering behaviours on a flat sand bar, two normal 

distributions of PDF (the green and red lines in Figure 3d) were 

very similar even with a seven-month gap between December 

2015 and June 2016, while the PDF (the blue line in Figure 3d) 

was sharper and higher after the flood than the two 

distributions. According to the backscatter characteristics, a 

statistic variable ( m ±s ) became optimal criteria as a global 

split-threshold value in case of ground roughness change. 

 

4.3 Prompt flash flood map 

For prompt flash flood mapping, pixel-based change detection 

and the correlation coefficient of the backscatter intensity were 

applied to identify flood inundated areas and damaged areas. 

Figure 3e shows the resultant overall flood map of the valley 

floodplain mainly in the lower Omoto River below 50 meters in 

elevation with a mild river slope of 1:300. The blue pixels 

indicate floodwater, where the backscattering variation 

decreased significantly by over -5 dB while the red pixels 

indicate damaged areas, where the backscattering variation 

increased significantly by over +3 dB due to surface changes. 

 

4.4 Validation  

For the validation of flood-affected areas, ground truth data 

were used to compare actual inundated areas with ALOS-2-

detected inundation areas. Part of the ground truth data were 

collected by a small unmanned aerial vehicle (sUAV: 

Quadcopter with a flight control system, © DJI Technology Co. 

Ltd., China). Figure 4 compares airphotos of the sUAV-

captured actual flood-affected areas during the flood (Figure 4a 

© September 11, 2016, GSI) and one year after restoration 

(Figure 4b © November Nov 29, 2017, ICHARM). According 

to field inspections, most of the flood-affected areas in 

Figure 3e (red color pixels) indicate geomorphologic and 

volumetric changes occurred, resulting in minor to major 

surface deformation. The author confirmed that the significant 

increase of backscatter intensity (red color pixels in Figure 3e) 

was mainly caused by the surface changes formed by overflows 

and debris flows, i.e. sand, gravel and driftwood. 
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Figure 3. Experimental statistical analysis and flood map in Omoto River; (a) sand bar near the levee breach in sampling site 

(© September 1, 2016, Google), (b) ALOS-2 amplitude images (R: pre-flood on Jun 9, 2016, G: pre-flood on December 11, 

2015, B: post-flood on September 1, 2016), (c) backscattering plots between variation and DEM (© GSI), (d) distribution of 

PDFs in sand bar, (e) overall flash-flood map, (f) distribution of PDFs in stacks of driftwood, and (g) stacks of driftwood in 

sampling site  (© September 1, 2016, Google) 
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Figure 4. Comparative sUAV-captured airphotos during flood 

(© September 11, 2016, GSI) and after one year restoration (© 

November 29, 2017, ICHARM) 

 

5. DISCUSSION 

The author’s findings were summarized and discussed focusing 

on the surface and double bounce scattering effects in the 

single-polarization (HH) data processing as follows:  

 

First, as an accurate pre-processing of SAR, geometric 

correction and speckle noise reduction are essential 

preconditions for accurate, prompt flash-flood mapping for a 

valley floodplain lying along the lower Omoto River. 

Second, the author investigated the characteristics of the 

backscatter variation in the valley floodplain using a statistical 

split-threshold approach. For accurate, prompt flash-flood 

mapping, backscatter intensity should be investigated more 

carefully by conducting not only two-period comparison before 

and after the flood but also time-series spatio-temporal change 

analysis. However, because of time difference between 

emergency observation and an actual flood event, accurate flash 

flood detection is extremely difficult at this moment.  

Besides the limitations of single polarization, there are many 

challenging issues to be solved for more accurate flood mapping 

in the future; for example, comparative studies of backscattering 

changes with different incidence angle, object orientation, 

segment length, and height influenced by surface roughness, 

particularly regarding high-density residential and commercial 

zones without validation data. 

Finally, when it comes to accomplishing more credible risk 

information with higher accuracy, the application of ALOS-2 

data should be more widely promoted for nationwide 

monitoring, as well as calibration and validation of hydro-

model simulation to compare simulated and actual flood 

inundation at the flood peak.  

 

6. CONCLUSION 

To improve the risk management capacity and resilience of 

communities without sufficient risk information, the author 

proposed a statistical split-threshold method for supervised and 

unsupervised flash-flood detections to identify flood inundated 

and damaged areas. The resultant flood map shows the 

possibility of a rapid, straightforward change detection method 

to flash flood mapping, in particular to identify floodwaters, 

damaged buildings, damaged rice fields, and stacks of driftwood 

through evidenced-based investigation. The trial prompt flash 

flood map will be continually updated to overcome insufficient 

accuracy and data limitations. Moreover, this feasibility study 

found that the ALOS-2-derived proxy maps can be applied to 

integrate risk information data as the subsequent flood risk and 

damage data (i.e., damage to buildings, infrastructure, and rice 

crop in the flooded area) at any scale and with any kind of 

pixel-based calculation for operational risk management and 

emergency response. Satellite-based emergency mapping should 

be widely applied to all levels of a flood risk management 

community as communication tools to implement the best 

practice to build safe societies and strengthening communities 

through periodical evacuation drills. 
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