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ABSTRACT: 
 

The collapse of buildings during the earthquake is a major cause of human casualties. Furthermore, the threat of earthquakes will 

increase with growing urbanization and millions of people will be vulnerable to earthquakes. Therefore, building damage detection 

has gained increasing attention from the scientific community. The advent of Light Detection And Ranging (LiDAR) technique 

makes it possible to detect and assess building damage in the aftermath of earthquake disasters using this data. The purpose of this 

paper is to propose and implement an object-based approach for mapping destructed buildings after an earthquake using LiDAR 

data. For this purpose, first, multi-resolution segmentation of post-event LiDAR data is done after building extraction from pre-event 

building vector map. Then obtained image objects from post-event LiDAR data is located on the pre-event satellite image. After that, 

appropriate features, which make a better difference between damage and undamaged buildings, are calculated for all the image 

objects on both data.  Finally, appropriate training samples are selected and imported into the object-based support vector machine 

(SVM) classification technique for detecting the building damage areas. The proposed method was tested on the data set after the 

2010 earthquake of Port-au-Prince, Haiti. Quantitative evaluation of results shows the overall accuracy of 92% by this method.  
 
 

 

1. INTRODUCTION 

The extraction of building information from high resolution 

remote sensing data is an important research 

topic in disaster management studies such as earthquakes, 

drought, cyclone, etc.(Peng and Liu 2005). Among the 

mentioned cases, the earthquake is one of the deadliest events 

that thousands of people are affected every year(Geller 1997). 

For example, an earthquake that occurred on 12 January 2010 in 

Port-au-Prince Haiti, killed over 230,000 people and homeless 

about 1.5 million people. 
 

In case of disaster management after the earthquake, it is 

important to rapidly identify the building damaged areas, to 

save people life, and restore the damaged areas(Vetrivel et al. 

2015). Initially, the extraction of the damage information can be 

performed based on the visual interpretation of high-resolution 

aerial/satellite images. It is an expensive and time-consuming 

process and difficulty in supporting coherent image 

interpretation(Rezaeian 2010, Voigt et al. 2007). As an 

alternative, automatic methods based on image processing 

algorithms can be used.   
 

Different methods can be used for mapping the building damage 

area after the earthquake by means of high resolution satellite 

images, such as comparing the pre- and post-event 

images(Janalipour and Taleai 2017, Rastiveis, Samadzadegan 

and Reinartz 2013, Li et al. 2011, Huyck et al. 2005, Miura, 

Modorikawa and Chen 2011) or based on only post event 

image(Bai et al. 2017, Zhai et al. 2016, Ishii et al. 2002, Ma and 

Qin 2012). Most of the studies used both pre-and post-event 

image data because of their accurate results. But have a major 

limitation, especially in developing countries, do not have 

reference data(Li et al. 2011). 
 

Even though optical images are used to extract spectral, 

textural, shape and morphological properties of buildings, cause 

several problems such as shadows and high-rise building 

displacement problems(Rathje et al. 2005, Donnay, Barnsley 

and Longley 2003). Therefore, Light Detection and Ranging 

(LiDAR) is employed as a relatively new remote sensing 

technique rather than spectral information derived from the 

optical images for building damage detection. Actually, the 

emergence of LiDAR system makes it possible to acquire 

accurate height information with low cost and time for 

identifying damaged and standing buildings. In addition, the 

data can be acquired independently of lighting conditions and 

poor illumination such as night, clouds and smoke.  

 

Building damage detection based on LiDAR data is helpful 

because it is able to collect accurate altitude data immediately 

after an earthquake and independent of light conditions. Since 

the LiDAR alone could not be detected all of the buildings, 

Many studies are based on the comparison of the new LiDAR 

data with the existing non-LiDAR data such as CAD models, 

vector maps, and other data as the reference data(Vosselman, 

Gorte and Sithole 2004, Rehor 2007).  
 

In addition, Most of the studies have worked on building 

detection, based on the combination of optical imagery and 

three-dimensional data. This usually improves the building 

detection results. For example, Vosselman (2004) is detected 

the differences between building layer of the pre-event vector 

map and the building image-objects of the LiDAR data for 

separating building damaged area (Vosselman, Gorte and 

Sithole 2004).  Turker (2005) is used pre and post-event 

satellite images for generating digital terrain model (DTM) and 

compared LiDAR height information to distinguish damaged 

buildings (Turker and Cetinkaya 2005). Turker (2008) is 

applied shadow for separating building area  from post-event 

image, and compared the results with the pre-event building 

map to estimate the damage buildings (Turker and Sumer 

2008). Chen (2010) is  developed a double-threshold strategy 
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to detect building changes by using old 3D building models 

and new LiDAR data(Chen and Lin 2010). Awrangjeb(2015) 

is compared the geographic database with extracted buildings 

from the newly-available LiDAR data to detect damaged 

buildings (Awrangjeb 2015). Du (2016) is calculated height 

difference and grey-scale similarity as change indicators for 

detecting building changed areas (Du et al. 2016).  

 

The purpose of this study is to develop an object-based method, 

based on the segment by segment comparison of derived image-

objects for building damage detection immediately after the 

earthquake. For this purpose, this study is organized into four 

sections. After the introduction, a description of the proposed 

method for building damage detection is given in Section 2. The 

experimental area and data are explained in section 3. Finally, 

implementation results are shown and discussed in section 4. 

 

 

2. METHODOLOGY 

The flowchart of the proposed method summarized in Figure 1. 

As shown in this figure, first, building areas are extracted on 

post-event LiDAR data through available pre-event building 

vector map. In the second step, the image objects are generated 

through segmentation of LiDAR data. After that, obtained 

image objects from segmentation are located on the high 

resolution pre-event satellite image. Then, the proper features 

that have the higher ability to distinguish building damaged 

areas from healthy ones are calculated from both data. Finally, 

building damaged areas are extracted based on selecting 

appropriate training samples on the study area and importing 

them to object-based support vector machine classification. 
 

 
Fig 1. The flowchart of the proposed method for post-earthquake 

damage assessment using LiDAR data. 

 

 

2.1 Pre-processing 

In some cases, available data from different sources have miss-

registration problems such as shift and drift errors. In order to 

simultaneously use of these data, accurate co-registration is 

necessary before any other processing. Therefore, pre-event 

satellite image and obtained raster image from LiDAR point 

cloud data are registered with available building vector map in 

this step. Then, the pre-event image histogram is equalized in 

order to improve the quality and ease of using it in later stages. 

Finally, building areas are separated on post-event LiDAR data 

based on available pre-event building vector map. 
 

2.2 Segmentation 

Prior to the building damage detection, the post-event LiDAR 

data must be segmented for dividing an image into non- 

overlapping parts and generating meaningful objects (Schiewe 

2002). For this purpose, the multi-resolution segmentation is 

accepted between several segmentation techniques such as split 

and merge, region growing (Haralick and Shapiro 1985, Pal and 

Pal 1993). The most important step in data processing is the 

selection of appropriate segmentation parameters for building 

damage detection. These parameters include scale, shape, and 

compactness. In the meantime, the scale represented the size of 

the object, shape weight, indicated the importance of the 

spectrum and the compactness weight is represented the 

importance of the shape. The following equations represent the 

relationship between these parameters. 

 

. .spectral spectral shape shapescale w h w h                

                                                                                                 (1) 

1spectral shapew w   

 

. .shape compt compt smooth smoothh w h w h                 

                                                                                                (2) 

1compt smoothw w   

 

    compth l n                                (3)   

 

smoothh l b                                  (4) 

 

From these equations, spectralw  is spectrum weight, shapew is 

shape weight, n is the number of pixels, b is the common border 

length between the object, l is object perimeter, 
compactw is 

compactness weight and 
smoothw  is object uniformity.   

 
2.3 Feature extraction 

Feature extraction has an important role to capture meaningful 

information such as shape, texture, spectral and hierarchical 

from the image objects so it is a critical step in damage 

detection process. The Purpose of this step is to obtain features 

that help to detect the damaged buildings. Therefore, an 

appropriate feature is the one that makes a better difference 

between damaged buildings and healthy buildings.  Based on 

previous studies, geometry and textural information are useful 

in damage detection studies(Rastiveis et al. 2013, Janalipour 

and Mohammadzadeh 2016). In this step of the proposed 

method, appropriate features should be extracted from both 

post-event LiDAR data and pre-event satellite image. For this 

purpose, appropriate features for LiDAR data are extracted 

immediately after segmentation. But, obtained image-objects 
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from the LiDAR data are placed on the satellite image and then 

the image descriptors are extracted. Selected features, for both 

data including Haralick textural, geometry and statistical 

features for separating damage buildings are listed in Table 1.  

 
Table1. Applied textural features for change detection 
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Haralick features can be calculated using grey-level co-

occurrence matrix (GLCM). GLCM is a matrix that contains the 

number of each grey level pairs that are located at distance d 

and direction θ from each other(Haralick and Shanmugam 

1973).  
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Form this equation, (1, 0)  is pixel pairs in lag (di,dj), Ng is 

the  Number of Gray levels and R is the total number of 

possible pairs 

Geometry features are based on the shape of an image object 

and Statistical features are evaluate the relationship between 

image objects(Haralick and Shanmugam 1973). 

 

2.4 Classification 

This is the most important step in automatic damage detection 

algorithms from remote sensing data. Traditional pixel-based 

classification is widely used in change detection applications 

such as forest and environmental monitoring. However, this 

method has produced undesirable results in the case of building 

damage detection. In addition, traditional pixel-based 

classification cannot differentiate between object features that 

display high spectral overlap, such as, building roofs from 

pavements that are constructed using similar material. 

Furthermore, object-based classification offers possibilities to 

overcome these problems. This method takes into account 

knowledge of neighbourhood pixels. The object-oriented 

method is generally based on the concept that important 

semantic information is not represented in single pixels alone 

but in meaningful image-objects and their mutual relations. 

 

There are various methods for image classification.  Nowadays 

the scientist interested in to use SVM in the object-based case 

because it has much ability with good accuracy as well as the 

rapid process. 

 

The Support Vector Machine (SVM) is a non-linear 

approximation that is a method for binary classification. 

The aim of this algorithm is finding the optimal hyperplane that 

separates the d-dimensional data with maximum margin into 

two classes. SVM use kernel feature space that transmits the 

data into higher dimensional space. Equation 1, show the aim of 

non-linear SVM. 

 

Let l training samples {Xi, Yi}, 1...i l  and ( )d

iX R  

Parameterized hyperplanes by a vector ( ) . 0w w x b    

Hyperplane ( , )w b   that separates the data by a distance +1,-1 

 

   ( . ) 1i iw x by    (6)                                                
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be normalized by, 
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                (7) 

Minimizing w by Lagrange multipliers 

                

1
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             (8) 
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                                     i i i

i
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Finally two classes of damaged and undamaged buildings are 

obtained in this step through object-based SVM algorithm. 
 

3. STUDY AREA 

The earthquake on 12 January 2010 near Port-au-Prince, Haiti, 

killed over 230,000 people and caused extensive damage in 
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Port-au- Prince. Because of the high density of collapsed and 

damaged structures the 2010 Haiti earthquake is an ideal case 

study to evaluate automated damage detection methods. For this 

research, we obtained high resolution pre-earthquake satellite 

image and LiDAR point cloud data. A pre-disaster satellite 

image was acquired on 1 October 2009 by the WorldView-2 

satellite and post-disaster point cloud was acquired on 15 

January 2010 by LiDAR. Figure 2. Depicted the selected area 

from the data set. This area represents densely built-up areas 

comprising multi-story buildings, urban vegetation, and roads 

partly covered by debris. 

 

 
(a) 

 
(b) 

 
Fig 2. Selected area from the data set as test area. a) Post-event LiDAR. 

b) High resolution pre-event satellite image 

 

Pre-event vector map from study area are used for building area 

extraction. Figure 3. Represents the used pre-earthquake 

building vector map in pre-processing step. 
 

 

 

 
Fig 3. Used building vector map 

 

 

 

 

4. TEST AND EVALUATION 

 

In order to easily detect building damage area, first building 

areas were distinguished on post-event LiDAR data by a pre-

event building vector map. Figure 4. Demonstrates extracted 

building area on post-event LiDAR data by pre-event building 

vector map. 

 

 
 
Fig 4. Extracted building area by pre-event building vector map on 

post-earthquake LiDAR data  

 

After data pre-processing, segmentation of LiDAR data was 

implemented through multi-resolution segmentation algorithm. 

Required parameters such as shape, scale, and compactness 

were equal to 15, 0.3 and 0.7 for the LiDAR data. Figure 5. 

Demonstrates the LiDAR segmented image using mentioned 

parameters.  
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Fig 5. LiDAR, segmented image through multi-resolution segmentation 

algorithm  

 

Obtained image-objects from segmentation of LiDAR data are 

placed on pre-event satellite image and suitable features are 

calculated from both of Lidar and satellite image. Figure 6. 

Demonstrates the obtained image objects from LiDAR data on 

pre-event satellite image. 
 

 

 
Fig 6. Obtained image objects from LiDAR data on pre-event satellite 

image. 

 

Besides, 46 image objects including extracted features from the 

pre-event image and post-event LiDAR data were observed 

manually to be used for training the object-based SVM. Linear 

kernel function with control parameter (C) 1 is selected for 

classifying the post-event LiDAR data using SVM classification 

algorithm. Figure 7 shows the classification result on post-

earthquake LiDAR data in two classes of damaged and 

undamaged.   
 

 

 
Fig 7. SVM’s output in two classes: Red polygon shows 

damaged buildings and blue shows healthy buildings. 

 

As seen in Figure 7, red polygons show damaged area and blue 

areas show healthy buildings. SVM’s confusion matrix for this 

classification is shown in Table 3. As can be seen in Table 3, 

among 37 manually observed image objects as test data, the 

proposed algorithm detected 20 correct undamaged image 

object and 14 correct building damaged image object, and 

obtained overall accuracy by proposed method is 92%. 

 

Table 3. SVM’s confusion matrix 

 undamaged damaged 

undamaged 20 2 

damaged 2 

 

14 

 
Overall accuracy=92% 

 

 

5. CONCLUSION 

 

In this paper, a new method for mapping damaged buildings 

after an earthquake using LIDAR data and pre-event high-

resolution satellite image was proposed and implemented. The 

pre-event vector map is used for separating building area as an 

ancillary data. 

By means of the multi-resolution method and appropriate 

selection of parameters including shape, compactness, and 

scale, the segmentation was done on LiDAR data. 

Homogeneity, Entropy, Max. Diff, Std. Dev, Ang.2nd Moment, 

dissimilarity, compactness, brightness, density, and asymmetry 

information were extracted from both data. Finally, selected 

training samples were applied as an input feature vector in a 

object-based support vector machine (SVM) for classifying the 

area into two classes of damaged and undamaged buildings. The 

obtained overall accuracy, 92%, showed the ability of the 

proposed technique for distinguishing destroyed buildings from 

healthy buildings. Also, the classification results indicate that it 

is useful to use the pre-event image beside the LiDAR data in 

order to building damage detection. Although the results, 

especially in comparison with manually observed image objects, 

were promising, however, further studies need to improve the 

results. 
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