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ABSTRACT:

We consider problems on surveying the Earth surface during operative optoelectronic imagery for disaster management with respect
to attitude guidance and control of the agile spacecraft. The land surveying is carried out by a set of extended orthodromic routes of
scanning optoelectronic observation for a given part of the Earth surface. We present developed methods for synthesis of nonlinear
guidance and attitude control laws, dynamic research of the spacecraft attitude control system with the satellite astroinertial attitude
determination and digital control by the excessive gyro moment cluster. We present results on the efficiency of the developed vector
spline guidance laws, algorithms for discrete filtering and the digital gyromoment control of a satellite orientation during the areal land-
surveying of Istanbul neighborhoods for the spacecraft on sun-synchronous orbit with altitude of 720 km when the allowed deviation
of the target line from Nadir is within the cone with semi-angle of 40 deg.

INTRODUCTION

Dynamic requirements to attitude control system (ACS) for a
land-survey spacecraft (SC) are as follows: (i) guidance the tele-
scope’s line-of-sight to a predetermined part of the Earth surface
with the scan in designated direction; (ii) stabilization of an image
motion velocity (IMV) in focal plane (FP) of the onboard opti-
cal telescope. These requirements are expressed by the SC rapid
angular manoeuvering and spatial compensative motion with a
variable angular rate vector, Fig. 1. Lifetime up to 10 years,

fast spatial rotation mane-

Figure 1. The land-survey SC at
imagery of given targets

uvers (RMs) with effective
damping the SC structure
oscillations, fault tolerance
as well as the reasonable
mass, size and energy cha-
racteristics have motivated
development of ACSs equ-
ipped with excessive gyro
moment clusters (GMCs)
based on gyrodines (GDs)
– single-gimbal control
moment gyros. In the pa-
per we briefly present new

results on guidance, precise attitude determination and robust gy-
romoment attitude control of an agile satellite during operative
optoelectronic imagery for disaster management.

1. MODELS AND THE PROBLEM STATEMENT

We apply standard bases with the unit vectors and reference frames
(RFs) as follows: the inertial RF (IRF) I⊕ (O⊕Xe

IYe
I Ze

I ) with
the origin at the Earth center O⊕; the geodesic Greenwich RF
(GRF) Ee (O⊕XeYeZe) that is rotated with respect to the IRF
with the angular rate vector ω⊕ ≡ ωe; the horizon RF (HRF) Eh

e

(C Xh
cYh

cZh
c ) with the origin at point C and ellipsoidal geodesic

coordinates – altitude Hc, latitude Bc and longitude Lc; the SC
body RF (BRF) B = {bi, i = 1, 2, 3 ≡ 1÷3} (Oxyz) and the
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Figure 2. The reference frames for a space land-imagery

orbit RF (ORF) O = {ro, τ o,no} (Oxoyozo) with the origin in
its mass center O; the base S = {s1, s2, s3} and the sensor ref-
erence frame (SRF) of an optical telescope Sxsyszs, Fig. 2; the
image field reference frame (FRF) Oi x

iyizi with the origin in
center Oi of the telescope focal plane (FP) yiOiz

i; the visual RF
(VRF) V = {v1,v2,v3} (Ov x

vyvzv) with the origin in center
Ov of a CCD matrix in the telescope FP, moreover, points Oi and
Ov are coincident, Fig. 3. The base Ap={ap, bp, cp} and the ref-
erence frame STRFp Oxapy

a
pz

a
p of p’s star tracker are connected

with the CCD matrix in its focal plane, p = 1÷ 4, moreover, the
STRFp position is fixed in the BRF, the units ap of the STs’ opti-
cal axes belong to the cone’s surface with a semi-angle γa, Fig. 4,
but their actual positions in the BRF are not exactly known.
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Figure 3. The telescope reference frames

At last, we introduce the virtual base A={a1,a2,a3} for the star
tracker cluster (STC) and its RF

Figure 4. The bases S and A

Oxayaza (STCRF), that is cal-
culated on the basis of proceed-
ing the accessible measuring in-
formation from any combination
of the STs. For simplicity we
will propose that the bases B and
S (BRF and SRF) coincide. The
BRF orientation in the IRF I ≡
I⊕ is defined by quaternion Λb

I≡
Λ = (λ0,λ), λ= {λ1, λ2, λ3}
and with respect to the ORF – by
column φ={φi}, i = 1, 2, 3 ≡
1÷ 3 of Euler-Krylov angles φ1

(roll), φ2 (yaw) and φ3 (pitch).
We use the notations ω(t), r(t)
and v(t) for vectors of the SC
body angular rate, its mass cen-
ter’s position and progressive ve-

locity in the IRF. Here and after symbols 〈·, ·〉, ×, { · }, [ · ] for
vectors and [a×], (·)t for matrices are conventional notations.

Collinear pair of two GDs was named as Scissored Pair Ensem-
ble (SPE ) in well-known work J.W. Crenshaw (1973). Mini-
mum redundancy scheme based on 4 gyrodines in the form of 2
collinear pairs, has name 2-SPE. Fig. 5 presents simplest arrange-
ment of this scheme into canonical gyroscopic RF Oxg

cy
g
c z

g
c .

By a slope of the GD pair’s suspension axes it is possible to
change essentially a form of AM variation domain at any direc-
tion. The GMC’s angular momentum (AM) vector H has the
form H(β) = hgh(β), there h(β)≡

∑
hp(βp), hg is a constant

own AM value for GD # p=÷4 and column β= {βp}. In park
state the GMC scheme has the vector of normed AM h(β) = 0.

For a fixed position of the SC flexible structures with some sim-
plifying assumptions and t ∈ Tt0 = [t0,+∞) the SC angular
motion model is appeared as follows

Λ̇ = Λ◦ω/2; Ao {ω̇, q̈} = {Fω,Fq}, (1)

where ω={ωi, i = x, y, z ≡ 1÷ 3}; q={qj , j = 1÷ nq};
Fω = Mg − ω×G + Md(t,Λ,ω) + Qo(ω, q̇,q);

Fq={−aqj((δ
q/π)Ωqj q̇j + (Ωqj)

2qj)+Qq
j(ω, q̇j , qj)};

Ao=

[
J Dq

Dt
q Aq

]
;

G=Go + Dqq̇; Mg =−hgAh(β)β̇;

Go=Jω + H(β); Ah(β)=∂h(β)/∂β;

vector Md(·) presents the external disturbance torques, and Qo(·),
Qq
j(·) are nonlinear continuous functions.

Figure 5. The GMC scheme 2-SPE based on four GDs

The GMC torque vector Mg is presented as follows

Mg = Mg(β, β̇) = −H∗ = −hgAh(β) ug
k; β̇ = ug

k. (2)

Here ug
k = {ug

pk(t)}, ug
pk(t) = Zh[Sat(Qntr(ugpk, d

g), ūm
g ), Tu]

with period Tu = tk+1 − tk, k ∈ N0 ≡ [0, 1, 2, . . . ); func-
tions ugpk ≡ ugp(tk) are outputs of digital control law, func-
tions Sat(x, a) and Qntr(x, a) are general-usage ones, while
the holder model has the form y(t) = Zh[xk, Tu] = xk ∀t ∈
[tk, tk+1). At given the SC body angular guidance law Λp(t),
ωp(t), εp(t) = ω̇p(t) during a time interval t ∈ T ≡ [ti, tf ] ⊂
Tt0 , tf ≡ ti + T, and for forming the vector of GMC control
torque Mg(β(t), β̇(t)) (2), the vector columns β̇ = {β̇p} and
β̈ = {β̈p} are component-wise module restricted

|β̇p(t)| ≤ ūg < ū m
g , |β̈p(t)| ≤ v̄g, ∀t ∈ T, p = 1÷ 4, (3)

where values ūg and v̄g are some positive constants.

At simplest modeling of the SC body with a fixed telescope as a
free solid, its AM vector is Go = Go

0 ≡ 0 when the satellite ACS
is balanced on the AM. Moreover, the model of the SC attitude
dynamics has the form ω̇ = ε, where ε = J−1Mg is vector of
angular acceleration, and the model of SC attitude motion has the
following kinematic representation

Λ̇(t) = Λ(t) ◦ ω(t)/2; ω̇(t) = ε(t); ε̇ ≡ ε∗(t) = v. (4)

Modules of vectors ω(t), ε(t) and ε∗(t) are restricted, namely
|ω(t)| ≤ ω̄, |ε(t)| ≤ ε̄ and |ε∗(t)| ≤ ε̄∗, that is connected
with a limited envelop of the variation domains for the GMC
vectors of the AM H and control torque Mg with permissible
rate of its variation. We apply the modified Rodrigues parameters
(MRP) vector σ = {σi}= e tg(Φ/4) with Euler unit vector e
and angle Φ of own rotation. Vector σ is one-one connected with
quaternion Λ by straight σ = λ/(1 + λ0) (Λ⇒ σ) and reverse
λ0 = (1−σ2)/(1 +σ2); λ = 2σ/(1 +σ2) (σ ⇒ Λ) relations.
For vector σ kinematic equations have the form

σ̇=Fσ(σ,ω)≡ 1
4
(1− σ2)ω + 1

2
σ × ω + 1

2
σ〈σ,ω〉;

ω = 4[(1− σ2)σ̇ − 2(σ × σ̇) + 2σ〈σ̇,σ〉]/(1 + σ2)2,
(5)

its second derivative is presented as follows
σ̈ = 1

2
[−〈σ, σ̇〉ω + 1

2
(1− σ2)ε+ σ̇ × ω + σ × ε

+σ̇〈σ,ω〉+ σ〈σ̇,ω〉+ σ〈σ, ε〉].

We have applied the attitude determination system (ADS) which
contains an inertial measuring unit (IMU) and astronomical sys-
tem (AS) based on the STC with the star trackers fixed in the
SC body. The ADS is a part of the strapdown inertial naviga-
tion system (SINS) which solves the general navigation problem
– determine both orientation and location of a satellite.
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Figure 6. The astronomical checking axes’ concordance

Figure 7. Alignment scheme of a telescope and the STC

A special mode may be organized for mutual binding the SRF and
STCRF, when a telescope scans the star sky and simultaneously
the optoelectronic STs’ measurements are registered, Fig. 6. For
the alignment verification other mode is based on observing the
terrestrial marked objects by the telescope, Fig. 7. Many cus-
tomers have own software for processing electronic images and
they order only the preprocessed video-information on strictly
specified terrestrial parts but together with a service information
on the actual conditions of space imagery. Here priority chal-
lenge is to develop methods for a more accurate definition of ac-
tual mutual position of the telescope and AS by a processing of
the measurement information directly aboard a spacecraft.

The problems of the ADS signal processing are connected with
integration of kinematic equations in using the information only
on the quasi-coordinate increment vector obtained by the IMU at
availability of noises, calibration (identification of the IMU bias
bg and variation m of the measure scale factor) and alignment
(identification of errors on a mutual position of the IMU G and
AS A reference bases) by the AS signals with the main period To.
Many authors applied quaternion Λ, an orientation matrix C, Eu-
ler vector φ= eΦ, terminal rotation vector ρ= 2e tg(Φ/2) etc.
Moreover, for the SC low angular motion with a small variation
of angle Φ during period To and almost fixed Euler unit e, inte-
grating kinematic relation for Euler vector φ(t) with calculation
of values Λr ≡ Λ(tr) is carried out by the scheme

δφr = iωr =
tr+1∫
tr

ω(τ)dτ ≡ Int(tr, To,ω(t));

φr + δφr = φr+1 ⇒ Cr+1 ⇒ Λr+1,

where δφr=δΦrer, tr+1 = tr+To, r∈N0.Angular movements
of a maneuvering land-survey SC are performed on sequence of

the time intervals for the observation scanning routes (SRs) and
quick rotational maneuvers (RMs) with variable direction of an-
gular rate vector ω when its module ω up to ωm = 3 deg/s. As-
sume that the measured values of the quasi-coordinate increment
vector igωm s, s ∈ N0 enter from IMU with period Tq � To, and
the measured values Λa

m r enter from AS with period To :
igωms = Int(ts, Tq,ω

g
m(τ)) + δn

s ; Λa
mr = Λr◦Λn

r ; s∈N0.

Here measured vector ωg
m(t)≡ (1 + m)S∆(ω(t) + bg) of SC

angular rate is presented into the IMU base G taking into account
the unknown small and slow variations of the IMU bias vector
bg = bg(t); orthogonal matrix S∆(t) describes errors on a mu-
tual angular position of the IMU and AS reference frames; scalar
function m = m(t) presents an unknown slow and small varia-
tion of the IMU scale factor, for example, |m(t)| ≤ 0.01, when
relation 1 −m2 ∼= 1 is satisfied. We take into consideration the
Gaussian noises δn

s and Λn
k in the IMU and AS output signals.

The problem consists in developing algorithms for obtaining the
estimations Λ̂l, l ∈ N0 with given period Tp = tl+1−tl multiple
to period To, in a general case, with a fixed delay Td with respect
to the time moments tr , and also in developing algorithms for the
ADS calibration and alignment with the derivation of estimates
b̂g
r , Ŝ∆

r and m̂r during all modes of the SC attitude motion.

Principal problems get up on a planning the space land-survey
and the SC angular guidance at its route motion when a space
observation is executed at given time interval t ∈ T – determi-
nation of quaternion Λp(t), vectors of angular rate ωp(t) and
acceleration εp(t) in the form of explicit functions, proceed from
the main requirement: optical image of the Earth given part must
move by desired way at the telescope focal plane. Assume that
for any time interval T we carried out the SC gui-dance attitude
law by numerical integrating the quaternion kinematic equation
in (4) and we have obtained numerical data in points tl ∈ T,
l ∈ N̄ ⊂ N0. This law corresponds to required scanning route
Λp(t),ωp(t) by arbitrary type – trace, orthodromic, with opti-
mal equalization of a longitudinal IMV, stereo observation et al.
The problem consists in analytical representation of the guidance
law without any restriction on duration of interval T.

If we have two adjacent SRs, then for the SC rotational maneuver
(RM) we have obtained the boundary conditions by quaternion,
vectors ω and ε and also by vector ε∗ in a time moment when
the second SR is beginning. For the RM time interval t ∈ Trp ≡
[tpi , t

p
f ], tpf ≡ t

p
i + T rp and the general boundary conditions

Λ(tpi ) = Λi; ω(tpi ) = ωi; ε(t
p
i ) = εi;

Λ(tpf ) = Λf ; ω(tpf ) = ωf ; ε(t
p
f ) = εf ; ε

∗(tpf ) = ε∗f
(6)

taking into account given restrictions on vectors ω(t) and ε(t)
we consider the problem on synthesis of a guidance law at the
spacecraft RM using analytic relations only.

At a land-survey SC lifetime up to 10 years its structure inertial
and flexible characteristics are slowly changed in wide bound-
aries, the solar array panels are rotated with respect to the SC
body and the communication antennas are pointing for informa-
tion service. Therefore inertial matrix Ao and partial frequencies
Ωqj of the SC structure oscillations in (1) are not complete certain.
General problem consists in dynamical designing the GMC’s ro-
bust digital control law ug

k = {ug
pk}.

2. SMOOTHING THE DISCRETE MEASUREMENTS

The classical problem on polynomial approximation of the values
ys = f(xs), s = 1÷n for the unknown scalar function y = f(x)
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as the polynomial y =
∑m
i=0 aix

i with the degree m < n using
the method of least squares (MLS), consists in definition of the
coefficients ai, i = 0÷m from the condition

n∑
s=1

{(
m∑
i=0

aix
i
s)− ys}2 ⇒ min .

Using the elegant Gauss notation [u] ≡
∑n
s=1 us, one can obtain

the system of m+ 1 normal scalar equations
m∑
i=0

ai[x
i]=[y];

m∑
i=0

ai[x
i+1]=[xy]; ...

m∑
i=0

ai[x
i+m] = [xmy].

At introducing column a = {a0, a1, ...am} this system is pre-
sented in the form Ca = b by the trivial way. Here matrix
C = ‖cik‖ is symmetrical and ”recursive” (cik=ci−1,k+1), and
the required column a is computed on the basis of standard algo-
rithms (Lanczos, 1956). For the MLS polynomial approximation
the degree m must be chosen taking into account the length of
access data ys, s = 1÷n. The solution of practical tasks demon-
strates that it is rational to apply method (filter) of the Savitsky –
Goley (Orfanidis, 1996) polynomial smoothing that is a modifi-
cation of the MLS for large values n. Here the sequence of the
discrete values ys is approximated in a ”moving” window (frame)
with the length n∗ � n, where n∗ is a whole odd number and
also a ”moving polynomial” with small degree m, for example
m = 3. The first frame is formed by the values ys = f(xs),
s = 1÷n∗ beginning from the first measurement, and a poly-
nomial with the given degree is constructed for it by the MLS.
Then the frame is displaced on one value and the approximation
is carried out again. Every time in the output sequence one can
use only the single value of an approximation polynomial that
corresponds to the center (n∗ − 1)/2 of the current position of
a ”moving frame”. The values of 3-dimensional vector function
ys = f(xs) of the scalar argument using the Savitsky – Goley
filter are smoothed out by application of this procedure for values
of each component of the vector composed from mapping values
of the vector function on the axes of some orthogonal basis.

The problem on definition of the mutual orientation of two or-
thogonal bases on the basis of the data about two sets of the unit
vectors that are arbitrarily placed in the bases, is more complex.
Let a set of the units bi be given that are measured in the base
B, and a set of the units ri corresponding to them specified in
the base I. The classical problem of vector matching problem) is
formulated as follows: let us define an orthogonal matrix A with
a determinant equal to +1, which minimizes the quadratic index

L(A) = 1
2
Σai|bi −Ari|2 ⇒ min,

where the numbers ai > 0 are the weighing coefficients. It has
been strictly proved that the solution of this problem is the op-
timal quaternion Λ that is equivalent to the required orthogonal
matrix A and is defined as an eigenvector of the matrix K with
the maximum eigenvalue qmax, e. g. by relations

z = Σ aibi × ri; B = Σ aibir
t
i; S = B + Bt;

K =

[
tr B zt

z S− I3trB

]
; K Λ = qmax Λ.

(7)

Relations (7) represent the QUEST algorithm (Markley and Mor-
tar, 2000), that is further applied for processing the measuring
information obtained both in the mode of astronomical check-
ing axes’ concordance (ACAC), see Fig. 6, and in the mode of
marked checking axes’ concordance (MCAC), see Fig. 7. The
quaternion Λ is an one-one related to the MRP vector σ by the
explicit analytic relations, that permits a transforming the prob-
lem on smoothing the quaternion data to standard task on smooth-
ing the vector measurements.

3. DEFINITION OF THE TELESCOPE ORIENTATION

In the ACAC mode at scanning the star sky with the angular rate
ω?z≈0.015 deg/s on the SC pitch channel, the ”moving window”
is organizing with telescope’s field-of-view at a fixed frequency
of accumulating the electronic image charge packets along the
columns of the CCD matrix. At first, we define the sequence of
quaternion Λs

s for the base S with exact binding to the time mo-
ments ts, s ∈ N0, on the star sky photo. Then two sets of the
unit directions on stars are defined for each frame: the set of the
unit vectors rs

ν in the VRF by the stars’ relative coordinates into
the CCD matrix and the set of unit vectors bs

ν in IRF by direct
ascents αν and inclinations δν , ν = 1÷n for stars from the star
catalogue FK-5. In completion the QUEST procedure is called
to determine the SRF attitude quaternion Λs

i values with respect
to the IRF at the time moments tmi , i= 1 ÷Nk, where Nk is the
frame quantity in the electronic photo. As a result, one can obtain
the sequences of values both quaternion Λv

s and quaternion Λs
s

for the RFs orientation in the IRF. For describing deviation of the
VRF from its required position in the IRF we applied kinematic
parameters in the form of angle δφe (deviation of unit v1 from
its required position) and angle δφx (a turn about a telescope’s
optical axis). For these parameters we have studied the RMS de-
viations obtained with the frame dimension 1.3×1.3 deg. Results
testify that to ensure a permissible error on determination of the
telescope axis’ actual position into the IRF, it is enough ten stars
being observed in the frame. The error δφx is dozen times worse
even at larger star’s quantity. That result is explained by the small
telescope’s field-of-view, e. g. by the insufficient measuring base.
The elaborated technique for a more accurate definition is based
on widening the measuring astronomical basis at the expense of
long-term SC scanning motion, perhaps with the time technol-
ogy breaks of star observation by a telescope: it is assumed the
possibility of the telescope motion with the closed cover (Somov
et al., 2008). We have carried out numerical calculations with
filtering of the telescope attitude estimations by Savitsky – Go-
ley method. The obtained results indicated that such technique
ensures the RMS deviation on angle δφx no more than 1 arc sec.

In the MCAC mode a definition of the telescope orientation actual
values Λs

s is carried out by a scanning optoelectronic observing
the Earth polygons with terrestrial marked objects, see Fig. 7.
Here also only the measuring information from the telescope is
applied. In this mode the SC fulfills a program motion, given by
a set of splines for the MRP vector σ(t), during the ACS oper-
ation. These vector splines are calculated from the conditions of
observing a terrestrial polygon with given azimuth of scanning.
Sequence of actual VRF angular positions in the IRF at obser-
ving a terrestrial polygon is carried out by well-known method of
backward dynamical photogrammetric intersection with applying
the precise tie to the time moments ts for appearing the electronic
images of the polygon’s marked objects on the electronic photo-
frame. Here we apply our technique (Somov and Butyrin, 2012)
that is similar to the technique for ACAC mode presented above.

4. DEFINITION OF THE STS ORIENTATION

The base A = {a1,a2,a3} of the STC, see Fig. 4, is calculated
by processing an accessible measuring information, obtained at
both the ACAC and MCAC modes from any combination of the
STs. The CCD matrix in the focal plane of each ST is fixed in the
BRF, therefore, the ”summary” field-of-view for the STC, based
on any combination from no smaller then two star trackers, puts
together a large measuring base. This measuring base is quite

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W4, 2018 
GeoInformation For Disaster Management (Gi4DM), 18–21 March 2018, Istanbul, Turkey

This contribution has been peer-reviewed.    
https://doi.org/10.5194/isprs-archives-XLII-3-W4-475-2018 | © Authors 2018. CC BY 4.0 License.

 
478



Figure 8. Errors of a filtering by the two-pass technology

sufficient for high-accuracy determination of the STCRF angular
position in the same inertial base I. Naturally, the best results are
obtained if it is possible to obtain measuring information from
all forth STs and to fulfill next onboard processing, first by the
QUEST algorithm and then with filtering by Savitsky – Goley
method. The necessity of additional alignment verification in the
MCAC mode is accounted by different conditions of observing
the ”cold” space and the ”warm” Earth by the telescope. In the
other limited calculated case, the virtual STCRF is constructed
based on the information about angular positions of the optical
axes units ap for any two STs by well-known TRIAD algorithm.

5. ALIGNING THE TELESCOPE WITH THE STC

It is clear, that if we have estimations on the VRF and STCRF
orientation in the same inertial base I, then it is simple to obtain
a constant correction quaternion for taking into account their re-
ciprocal position. Such a correction quaternion is applied in the
SC attitude control system at observing the Earth surface. Af-
ter fulfilling an alignment verification on terrestrial polygons, the
SC onboard equipment has the possibility for operative solution
of tasks on a posteriori restore of actual the VRF attitude at any
time moment of the Earth‘s scanning optoelectronic observation.
Initial alignment of a telescope and the virtual STCRF is fulfilled
during a time period of the SC in-flight tests on terrestrial poly-
gons, where the marked objects’ coordinates are known with fine
accuracy. At next regular exploitation of the land-survey SC there
is needed from time to time to fulfill an observing some passing
parts of the Earth surface in small neighbourhood of the SC trace,
for which the place maps have known coordinates of conditional
marked objects, for example maps of large cities.

6. THE ADS CALIBRATION AND ALIGNMENT

Suggested principal ideas are as follows: (i) there is needed to de-
fine estimations Ŝ∆ and m̂ only on the whole for virtual bases A
and G with respect to main base S = B, without concrete details
on errors of individual onboard measuring devices and to inte-
grate the kinematic equations with a small computing drift; (ii)
an idea is being developed to use approximation and interpola-
tion of the measured information in the intermediate points with
period Tq multiple to the main sampling period To; (ii) identifi-
cation of the IMU drift vector bg is ensured by nonlinear discrete
Luenberger observer. We provide a forming of estimations b̂g

r ,
Ŝ∆
r and m̂r fixed on period To when estimations b̂g

r is updated
on-line, and estimations Ŝ∆

r , m̂r are regularly formed off-line,
i.e. thier are based on the processing of available measurement
data, accumulated during long-term time intervals.

Figure 9. Errors on filtering of the IMU output signals

For discrete filtering the measured values of the quasi-coordinate
increment vector igωms we used the two-pass filtering technology
(Somov et al., 2017) – combination of approximation of the data
igωms by the vector polynomial ĩgωmr(τ) of 3rd order in sliding win-
dow with 9 measurements on the MLS and the spline interpola-
tion on centers of two adjacent sliding windows by spline ǐgωmr(τ)
of 5th order for local time τ = t−rTo ∈ [0, To]). The technology
is illustrated by scheme in Fig. 8. Here errors δigω of measured
quasi-coordinate are marked by the ”stars” for time moments ts
(index s is shown only), green dotted lines are given polynomials
ĩgω(τ) of 3rd order and burgundy line is presented the smoothly
conjugate splines îgω(τ) of 5th order. Error δωg(τ) for esti-
mation ω̂g(τ) on the angular rate is presented in lower part of
the figure. The estimation ω̂g(τ) strongly agreed with estima-
tion îgω(τ) as it is carried out by explicit analytical relations. At
compensation of errors on the drift vector, a mutual angular po-
sition of the IMU and AS reference frames and on a scale factor,
the continuous vector estimation îωr (τ) in base A is computed by
relation îωr (τ) = (1 − m̂r)(Ŝ

∆
r )t(̌igωr (τ) − b̂g

rτ) on r-th time
interval Tr≡ [tr, tr+1], moreover îωr+1 = îωr (To).

Identification of IMU bias bg is carried out with period To by
extended Luenberger filter (ELF). At the time interval Tr an es-
timation of the SC attitude is attained by integration of the vec-
tor differential equation ˙̂σr(τ) = Fσ(σ̂r(τ), ω̂r(τ)) (5) using
ODE45 method (Shampine, 1986) with a forming of an estima-
tion of the MRP vector σ̂r(τ). For this vector equation an ini-
tial condition is calculated by signals of the ELF. Assume that at
the time moment t = tr we have the AS information on the SC
orientation in the form of quaternion Λa

mr, the correcting vector
∆pr(g

o
2 ,Qr) and quaternion ∆Pr(g

o
1 ,Qr) were formed, where

Qr≡(q0r,qr)≡(Cϕr
2
, eqr Sϕr

2
) ≡ Qk(eqk, ϕk)=Λ̃

a
mr ◦ Λ̂r.

At the same time moment tr initial condition σ̂r(0) ≡ σ̂r is
defined by transformation Λ̂r ⇒ σ̂r for calculation of the esti-
mate σ̂r(τ) on the r-th interval. After such integration one can
obtain the MRP vector’s value σ̂r+1 = σ̂r(To) and the value of
quaternion R̂r is calculated by transformation σ̂r+1 ⇒ R̂r. The
developed nonlinear ELF has the form (Somov et al., 2017)

Λ̂r+1 =R̂r◦∆Pr(g
o
1 ,Qr); b̂

g
r+1 = b̂g

r + ∆pr(g
o
2 ,Qr);

∆Pr+1 = Qr+1(eqr+1, g
o
1ϕr+1); ∆pr+1 = 4go

2σ
q
r+1,

(8)

where both the quaternion and vector relations are applied. More-
over, the MRP vector σqr+1 is defined analytically on the quater-
nion value Qr+1, and the ELF scalar coefficients go

1 , g
o
2 are cal-

culated by explicit analytical relations. In final stage the MRP
vector values σs are processed by recurrent discrete filter with
period Tp. The filtering technology is illustrated by scheme in
Fig. 9. Here δω(t), δφ(t) are the continuous mismatches and
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their filtered digital values δωf
l , δφ

f
l are presented by black lines

when period Tp=16Tq.As a result, one can obtain the MRP vec-
tor values σ̂l which are applied for a forming of the quaternion
estimate Λ̂l, l ∈ N0 with given period Tp using transformation
σ̂l ⇒ Λ̂l. The IMU astronomical correction is temporarily dis-
abled when module ω(t) of the SC angular rate vector satisfies
inequality ω(t) ≥ ωm

1 = 1 deg/s during a time interval of the SC
rotational maneuver, but estimation of the SC angular position
continues using forecast of the b̂g variation. For the direct ac-
count of the AS measurement noise, the observer of this structure
may be presented by the extended Kalman filter (EKF). More-
over, the constant covariance and gain matrices are determined
analytically only for the steady state of EKF operation. Here for
identifying drift vector bg taking into account dependence σa(ω)
for the RMS deviation, we need to solve numerically the Riccati
matrix equation. In these circumstances, it is reasonable to apply
the observer of the IMU drift in the ELF form assigning its pa-
rameters so that to ensure the quality of estimation b̂g to be close
to the quality of the EFK with a constant value σa =σa(ωm

1 ).

7. PLANNING OF AN AREA LAND-SURVEY

The aim of an area land-survey

Figure 10. The area imagery

is to cover a given area on the
Earth’s surface with geograph-
ical centerC(Lc, Bc, Hc) by a
sequence of partly overlapping
scanning routes (OSRs). As-
sume that optoelectronic con-
verters (OECs) in the telescope
FP have the reverse mode. The
initial data for planning such a
land-survey are the size of the
area S = a × b with length a
and width b, parameters of the
SC orbital motion, characteris-
tics of the telescope and OECs,
restrictions on kinematic para-
meters of the SC angular mo-
tion. The values of azimuth de-
viation of orthodromic OSRs
from the route are up to ±π/9
and (1 ± (1/9))π. The main
aspect in solving this problem
consists in determining requi-
red number of scansN and lon-

gitudinal IMV in the telescope FP during the OSR performing.
Next this information is applied for synthesis of the SC guidance
laws at runnig both the central and side scans.

Central scan (CS) is the one, which center coincides with center
C of the area, and the ORF plane yoOzo at the scanning time
moment tc crosses point C. Estimated number of scans is: N =
2b(1−p/50)/(s0+sm),where s0 and sm are the sizes of the pro-
jections of the OEC central line on the Earth’s surface with mini-
mum (at the time moment tc) and maximum distance from center
C of the area, p ∈ [5, 10] – percentage of overlap of the scans.
The maximum distance corresponds to the case with restrictions
of pitch angle or of observation distance D. For conditional CS
the initial forecast of required longitudinal IMV V ic is carried out
by the trace observation scheme. Moreover, we obtain initial es-
timation of duration of the scan Tc = 2afe/(DV

i
c ), where fe is

effective focal length of the telescope, and the duration of areal
land-survey is Ta = NTc + (N − 1)Tr, where Tr = Tc/3 is

Figure 11. The SC spline guidance law for areal land-survey

predicted duration of the satellite RM between partly overlapping
scanning routes. We determine geodetic coordinates of the begin-
ning Ci and end Cf of the central scan equidistant from the point
C on the value of a/2 with azimuth A in forward and opposite
directions at time moments tc i = tc − Tc/2 and tc f = tc + Tc/2,
accordingly. Then the values tc i, tc f , V

i
c , Tc and azimuth A are

specified by iterative method using a numerical simulation of the
SC spatial motion when performing the orthodromic OSR at time
interval t ∈ [tc i, tc f ]. As a result, we provide the allowable de-
viation of the CS length from the specified value and obtain the
characteristics of the CS on the Earth’s surface: length ac and
width dc at the OEC center, the coverage area, the CS beginning
and end time moments, the geodetic coordinates of the center and
of corner points in a contour of the arbitrary central scan. The or-
thodromic OSR adjacent to the arbitrary CS is called the side scan
(SS). The calculation of the SS is similar, but there are additional
iterations in order to assign the position of its center Cb. The
initial coordinates of center Cb are determined by moving on the
Earth’s surface from point C at the distance di = ±∆d ∆n/N
with azimuth A ± π/2. Here the symbols (+) and (−) corre-
spond to the right and left SSs for the SC flight, ∆d = dmc − dc
represents the difference between width dc of the central scan and
its width dmc , calculated at the maximum distance, ∆n is the dif-
ference in modulus between the current side and central scans.
Estimation of time moment tbc for scanning of center Cb is the
following: tbc = tc + Tc + Tr. We assign the initial value of
the SS longitudinal IMV in the form of V ibc = ±V ic /2, where
the symbols (+) and (−) correspond to odd and even numbers
of such scans. Then the IMV values and other SS parameters are
iteratively refined. In the synthesis of the subsequent SSs, all cal-
culations are carried out with samples gained from the previous
SS, which performs as the central scan. If the number of scans
is odd, then the central conditional and the actual scans are the
same. For evenN the position of the actual scan center displaced
on a distance of dc/2 with azimuthA−π/2, and the time moment
of its scanning is changed by the value ∆tc = −(Tc + Tr)/2.
Moreover, the area center C will be located in the overlap of cen-
tral parts of two scans.

Fig. 10 represents the map with projections of scans and of tele-
scope target line trace obtained in planning two single SRs and
areal land-surveying neighborhoods of Istanbul for the SC in
sun-synchronous orbit with altitude of 720 km and inclination
of 98.27 deg, when the allowed deviation of the target line from
Nadir is within the cone with semi-angle of 40 deg. The first
SR Antalya, with duration of 10 s, starts at the point with coor-
dinates of N 36.68 deg, E 30.65 deg and runs with alignment
of longitudinal IMV. On the Earth’s surface the scanning route
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has a length of 54.78 km and a width of 46.87 km. Further the
areal land-survey is performed using five orthodromic OSRs with
rotational maneuvers in-between. Moreover, the scanning area of
the Earth’s surface has dimension 200×203 km, geodetic coordi-
nates of its center areN40.5 deg,E29.2 deg. The final SR Varna
for trace observation, with duration of 20 s, starts at the point with
coordinates N43.21 deg and E 27.9 deg. On the Earth’s surface
this SR has a length of 135.92 km and a width of 48.75 km.

8. THE SPACECRAFT ATTITUDE GUIDANCE LAWS

Analytic matching solution have been obtained for problem of the
SC guidance during any scanning route. The solution is based on
a vector composition of all motions in GRF using the following
reference frames: HRF, SRF and FRF. For any observed point C
the oblique range D is analytically calculated as D= |re

c − re|. If
matrix Cs

h≡ C̃ = ‖c̃ij‖ defines the SRF orientation in HRF Eh
e ,

then for any point M(ỹi, z̃i) in the telescope FP the components
Ṽ iy and Ṽ iz of the IMV normed vector are computed as follows

[
Ṽ iy
Ṽ iz

]
=

[
ỹi 1 0
z̃i 0 1

] qiṽs
e1 − ỹi ωs

e3 + z̃i ωs
e2

qiṽs
e2 − ωs

e3 − z̃i ωs
e1

qiṽs
e3 + ωs

e2 + ỹi ωs
e1

. (9)

Here ỹi=yi/fe, z̃
i=zi/fe are normed focal coordinates where

function qi ≡ 1 − (c̃21ỹ
i + c̃31z̃

i)/c̃11, and vector of normed
SC’s mass center velocity has components ṽs

ei = vs
ei/D, i=1÷3.

Further, ratio (9) is applied for calculation of the SC guidance law
at any scanning route.

Consider the time interval T ≡ [0, T ] with the following nota-
tions for its four points τp, p = 1 ÷ 4 : τ1 = 0, τ2 = T/3,
τ3 = 2T/3 and τ4 = T . For six values ωl = ω(tl) nearby
points τ1 = 0, τ4 = T standard interpolation is carried out by
the vector spline of degree five. This allows us to calculate val-
ues ε1 = ω̇(τ1) and ε4 = ω̇(τ4) of angular acceleration vector.
For four points τp ∈ T values σp, p = 1 ÷ 4 are computed,
also values σ̇p and σ̈p, p = 1, 4 for two boundary points. In-
terpolation of the RMP vector σ(t) ∀t ∈ T is carried out by
the vector spline of 7 degree σa(t) =

∑7
0 ast

s with 8 columns
as ∈ R3, s = 0 ÷ 7 of unknown coefficients. Eight columns
as are defined for spline σa(t) on the basis of (i) three bound-
ary conditions σa(0) = σ1; σ̇a(0) = σ̇1; σ̈a(0) = σ̈1 on the
left end of interval T, which results in a0 = σ1, a1 = σ̇1 and
a2 = σ̈1/2; (ii) two conditions σa(τ2) = σ2; σa(τ3) = σ3 in
points τ2 and τ3; (iii) three boundary conditions σa(T ) = σ4;
σ̇a(T ) = σ̇4; σ̈a(T ) = σ̈4. Elaborated matrix relation is ap-
plied for simultaneous analytical computation of all five sought
columns as, s=3÷ 7.

For SC rotational maneuver on a time interval Trp with the general
boundary conditions (6) we have developed analytical method for
synthesis of the SC angular guidance law based on the neces-
sary and sufficient condition for solvability of Darboux problem.
Here the solution is presented as the result of composition by
three simultaneously derived rotations of ”embedded” bases Ek

about the unit vectors ek, k = 1 ÷ 3 of Euler axes, quaternion
Λ is defined as Λ(t) = Λi ◦ Λ1(t) ◦ Λ2(t) ◦ Λ3(t), where
Λk(t) = (cos(ϕk(t)/2), ek sin(ϕk(t)/2)) and ϕk(t) is angle of
k’s rotation. Let us quaternion Λ∗≡(λ∗

0,λ
∗)=Λ̃i ◦Λf has unit

vector e3 =λ∗/ sin(ϕ∗/2) of 3rd rotation with computed angle
ϕ∗ = 2 arccos(λ∗

0). For quaternions Λk the boundary conditions
Λ1(tpi )=Λ1(tpf )=Λ2(tpi )=Λ2(tpf )=1;

Λ3(tpi )=1, Λ3(tpf )=(cos(ϕf
3/2), e3 sin(ϕf

3/2))

are applied, where ϕf
3 = ϕ∗ and 1 is the unit quaternion. We use

notationsω(k), ε(k), ε̇(k) with k=1÷3 for vectorsω, ε and ε̇ in
base Ek and the vector operator a

(k)
k−1 = Φ(ak−1,Λk) ≡ Λ̃k ◦

ak−1 ◦Λk for conversion from basis Ek−1 to basis Ek. Assume
that we assigned vectorsω1(t) = ϕ̇1(t)e1, ε1(t) = ϕ̈1(t)e1 and
ε̇1(t) =

...
ϕ1(t)e1. Then vectors ω(t), ε(t) and ε̇(t) in the BRF

are computed by the recurrent formulas with k = 2, 3:

ω
(k)
k−1=Φ(ωk−1,Λk); ε

(k)
k−1=Φ(εk−1,Λk); ε̇

(k)
k−1=Φ(ε̇k−1,Λk);

ω(k) = ω
(k)
k−1 + ωk; ε(k) = ε

(k)
k−1 + εk + ω

(k)
k−1 × ωk;

ε̇(k)= ε̇
(k)
k−1 + ε̇k + ω

(k)
k−1×εk + (2ε

(k)
k−1 + ω

(k)
k−1×ωk)×ωk.

As a result, we obtain functions ω(t) = ω(3)(t), ε(t) = ε(3)(t)
and ε∗(t) = ε̇(t) = ε̇(3)(t) by explicit analytic relations. Vectors
ω(t), ε(t) and ε∗(t) are presented in analytic form at assigning
splines ϕk(t) by different degrees, in general case using three
parts of given RM time interval Trp : (i) initial part of the time-
optimized acceleration under constraints when the SC moves to
its attitude motion with angular rate on fixed unit vector e3; (ii)
the part for SC motion with a constant angular rate on the unit e3;
(iii) the final part to guarantee the specified boundary conditions
on the RM right end when the sixth order scalar splines ϕk(t) are
applied, moreover all parameters of these splines are computed
by explicit analytic relations. As a result, for sequence of the
SRs and RMs at the space imagery from current orbit, we obtain
the uniform vector spline attitude guidance law which is a vector
command signal for the spacecraft ACS.

In Fig. 11 we present the vector guidance law corresponding to
the developed plan for areal land-survey of Istanbul neighbor-
hoods, see Fig. 10. Here angles φi of the BRF orientation in the
ORF, components of vectors σ(t), ω(t) and ε(t) are marked by
different colors – blue for roll, green for yaw and red color for
pitch, and module of vector ω(t) is marked by black color.

9. SPACECRAFT ROBUST ATTITUDE CONTROL

Assume that quaternion Λp, vectors of the angular rate ωp and
acceleration εp= ω̇p present the SC guidance law. Then the error
quaternion is E = (e0, e) = Λ̃

p◦Λ, Euler parameters’ vector is
E = {e0, e}, the error’s matrix is Ce ≡ C(EEE) = I3 − 2[e×]Qt

e

with matrix Qe =I3e0 +[e×], the error’s vector is δφ={δφi}=
2e0e, and error δω={δωi} is defined as δω=ω−Ceωp. Angu-
lar mismatch vector εl=−δφl, l ∈ N0, is filtered with period Tp
and then the vector values εf

k are applied in the developed digital
control law for the GD cluster (Somov et al., 2005)

gk+1 = Bgk + Cεf
k; m̃k = Kgk + Pεf

k;

Mg
k = ωk ×Go

k + J(Ce
kε
p
k + [Ce

kω
p
k×]ωk + m̃k),

(10)

where Ce
k = C(Ek), Go

k = Jωk + Hk and for du ≡ 2/Tu,
ai ≡ (duτ1i − 1)/(duτ1i + 1) elements of diagonal matrices
K = diag(ki), B, C and P are computed by the relations bi≡
(duτ2i−1)/(duτ2i+1); pi≡(1−bi)/(1−ai); ci≡pi(bi−ai) with
adaptive-robust tuning the parameters τ1i, τ2i and ki. The GMC
control torque vector Mg

k (10) is ”re-calculated” into vector ugk of
the GD commands using explicit function of the AM distribution
between four gyrodines (Somov et al., 2005). These commands
are fixed at the current step of digital control with period Tu. The
GMC is unloaded from accumulated AM by the compensation
scheme with digital control of a magnetic actuator.

10. SIMULATION OF THE ACS OPERATION

Applied astroinertial ADS was simulated with the following pe-
riods: Tq = (1/128) s, To = 1 s and Tp = (1/8) s. The discrete
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Figure 12. Errors at areal land-survey and the GD angular rates

Figure 13. Errors during second OSR and the GD angular rates

filtering of vector εεεl was executed with period Tp= (1/8) s, and
the GMC digital control was formed with period Tu= (1/4)s. In
Figs. 12 and 13 we present errors at stabilization of the SC angu-
lar motion during the areal land-survey (Fig. 10) with the uniform
attitude guidance law presented in Fig. 11, and also the GD an-
gular rates. In the lower part of Fig. 12 we have pointed the time
intervals of the OSMs with their indexes and scanning directions.

CONCLUSIONS

We briefly have presented new results on guidance, precise atti-
tude determination and robust gyromoment attitude control of an
agile land-survey satellite during operative optoelectronic areal
imagery for disaster management. We represented the discrete al-
gorithms developed for onboard signal processing, alignment of
the telescope with the star tracker cluster, and also onboard algo-
rithms for alignment and calibration of the spacecraft attitude de-
termination system. We have developed methods for a planning
the areal land-survey and synthesis of SC vector spline guidance
laws both at a spacecraft optoelectronic observing routes and its
spatial rotational maneuvers with given boundary conditions. We
briefly have presented algoritms for dicrete filtering and robust
digital attitude control of an agile land-survey satellite, and also
numerical results on the efficiency of the developed algorithms
for a satellite attitude control system. These results were ob-
tained for the areal land-surveying of Istanbul neighborhoods by
a sattelite in sun-synchronous orbit with altitude of 720 km. The
areal land-survey with terrestrial dimension 200 × 203 km was
performed using five orthodromic partly overlapping scanning
routes with rotational maneuvers in-between and total duration
of 225 seconds only. Within 20 minutes the obtained video data
together with a service information on the actual conditions of
the areal imagery will received and processed at terrestrial space

centre. As a result, the government agencies will have current
information on the actual influence of the natural disaster.

According to statistics, in Istanbul the earthquake occurs every
50 years, and every 300 years they literally wipe the city off the
face of the Earth. The reason is that Istanbul is located in the
zone of the North Anatolian fault, one of the largest and most
active in the world. In the last 2000 years in the region occurred
more than 30 earthquakes with magnitude more than 7 points.
In 1999, the earthquake whose epicenter was 11 km from Izmit
and 80 km from Istanbul, caused the death of 19,000 people and
damage to many historical monuments, museums, and libraries.
These tremors were felt both in Turkey and in Russia.

Today there is a very high risk of earthquakes in the Marmara re-
gion where 50% of the production means are located and lives a
quarter of the Turkey population. Seismologists have conducted
a study using the GPS marks located on those places where an
earthquake was registered in the Marmara sea, and also underwa-
ter equipment. The measurements will allow to constantly mo-
nitor the seismic activity and to improve the early detection and
rapid response. Although these measures help to better study and
understand the nature of earthquakes, but this system will raise
the alarm just 12 seconds before the tremors start. Therefore,
the use of the space observation technology is very important for
quick actions during natural disasters including earthquakes.
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