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ABSTRACT:

Coastline detection is a very challenging task in optical remote sensing. However the majority of commonly used methods have been
developed for low to medium resolution without specification of the key indicator that is used. In this paper, we propose a new approach
for very high resolution images using a specific indicator. First, a pre-processing step is carried out to convert images into the optimal
colour space (HSV). Then, wavelet decomposition is used to extract different colour and texture features. These colour and texture
features are then used for Fusion of Over Segmentation (FOOS) based clustering to have the distinctive natural classes of the littoral.
Among these classes are waves, dry sand, wet sand, sea and land. We choose the mean level of high tide water, the interface between dry
sand and wet sand, as a coastline indicator. To find this limit, we use a Distance Regularization Level Set Evolution (DRLSE), which
automatically evolves towards the desired sea-land border. The result obtained is then compared with a ground truth. Experimental
results prove that the proposed method is an efficient coastline detection process in terms of quantitative and visual performances.

1. INTODUCTION

The identification of a coastline involves two steps. The first
needs the definition of an indicator (also known as a key) that
will represent the land-sea boundary. The second step includes
detection of the chosen indicator within the available data source
(Boak, E. H. and Turner, I. L. , 2005).
The definition of an apparently simple notion such as the coast-
line, which is assumed to represent a linear boundary between
land and sea, is very challenging because of the wide range of in-
dicators that can be defined. For this reason, Robin (Robin, n.d.)
found more than a dozen of indicators, while Boak and Turner
(Boak, E. H. and Turner, I. L. , 2005) identified 19 generic lines
from 45 different indicators (Faye et al., 2011).
This diversity of indicators leads to the development of numer-
ous methods for coastline detection, which can be achieved in
various steps like pre-processing, segmentation and edge detec-
tion (Zhang et al., 2013).
Pre-processing methods can be grouped into two categories, which
are noise reduction and image correction.
For multispectral imagery, the normalized difference water index
(NDWI) proposed in (Mcfeeters, 1996) and the superfine water
index (SWI) recently introduced in (Sharma et al., 2015) are im-
portant metrics for classification. For panchromatic images, the
K-means and ISODATA methods are the most popular clustering
methods (Liu et al., 2011) (Garcı́a-Rubio et al., 2015). Never-
theless the initial positions of the cluster centroids guide the final
K-means clustering result
Ursani et al. (Ursani et al., 2009) proposed an approach, referred
to as FOOS, which is a mean of finding the K optimal centroids
initialisation. We implemented a FOOS based clustering by in-
tegrating colour and textures features obtained from wavelet de-
composition.
For the edge detection step, the literature lets us to appreciate
∗Corresponding author

different approaches. The most famous of these approaches is
the Canny edge detector (Canny, 1986). The snakes (Kass et al.,
1988) and the level set (Pro, 2008) (Liu et al., 2016) have also
been used, but, in general, for SAR imaging.
Compared with snakes’ method, in level set algorithm, the initial
contour is controlled to move automatically to the edges with-
out rigorous limits. However, level set evolution is slow, par-
ticularly in high-resolution images due to lots of variables and
complicated iterative methods. This leads to the development of
a new type of level set evolution method called distance regular-
ized level set evolution (DRLSE) (Li and Xu, 2010). The distance
regularization effect eliminates the need for re-initialisation, thus
avoiding numerical errors. DRLSE also accepts the use of more
wide-ranging and efficient initialisation parameters of the level
set function. This leads to reduce the number of iterations, while
ensuring sufficient numerical accuracy in order to improve the
coastline detection as shown in the results of this study.
The rest of the paper is as follow. Section 2 presents the proposed
method. Section 3 shows a validation step by comparing the re-
sults of the proposed method with the ground truth. The main
conclusion of this work is recapped in the last section.

2. PROPOSED METHOD

The block diagram in Figure 1 represents a general scheme of
the proposed method. The proposed method is implemented as
a 3-step algorithm: (1) pre-processing, (2) segmentation, and (3)
edge detection.
The pre-processing step is used to achieve image transformation
into HSV colour space and to extract colour texture features using
the coefficients of the image decomposition by wavelet transform.
The segmentation step aims to transform the pre-processed image
in order to discriminate the different regions of this image. This
allows isolating the dry sand from the wet sand. At the edge
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detection step we use the DRLSE method to extract the coastline.

Figure 1. Block diagram of the proposed method

2.1 Pre-processing stept

The data used in this study are downloaded from the Google Earth
Pro application; see an example on figure 2. They are provided
by DigitalGlobe and derived from pan-sharpening process.
Google Earth imagery has been used in land-sea segmentation for
coastline detection (Cheng et al., 2016), and in mapping water
depth and land cover (Collin et al., 2014). To detect the coast-

Figure 2. Image of test

line indicator, we use both colour and texture features. Texture
analysis was initially performed on grayscale images, thus dis-
carding colour information. Nonetheless, many new works have
been made to show the importance of colour in texture analy-
sis (Ilea and Whelan, 2011) (González-Rufino et al., 2013). In
this sense, to increase the accuracy of a good segmentation and a
perfect detection of the coastline, we carried out an experimental
study on different colour spaces: RGB, XYZ, Lab, HSV, YCbCr.
By comparing the different results of this study, we have seen that

the HSV space offers the best clustering performance while us-
ing colour and texture features; which is perfectly coherent with
the results presented in the literature. In fact, Paschos (Paschos,
2001) experimentally analysed the impact of colour space (RGB,
Lab and HSV) on colour and texture classification using a dataset
of 50 colour images and as texture descriptors the Gabor filters.
He concluded that HSV is the best colour space for texture classi-
fication. The HSV colour model defines colours in terms of hue,
saturation, and value (or brightness).
The colour and texture features considered in this study are gener-
ated using the wavelet transform, which makes it possible to per-
form a multi-scale analysis of the local structures (Mallat, 1989).
The wavelet transform decomposes the signal into a family of
translated and scaled wavelets. As signified in (1), a wavelet is a
function of zero average.∫ ∞

−∞
Ψ(x)dx = 0 (1)

For 1-dimension, the continuous wavelet transform (CWT) is writ-
ten as shown in (2).

F (a, b) =

∫ ∞
−∞

F (x)ϕ(a,b)(x)dx (2)

where ϕ(a,b) is a wavelet computed from the mother wavelet Ψ
by translation and scaling as shown by equation (3).

ϕ(a,b)(x) =
1√
a

Ψ(
x− b
a

) (3)

where a and b are positive integers and refers respectively to the
scale and the translation of the wavelet.
The Discrete Wavelet Transform (DWT) is an implementation us-
ing a discrete set of scales and wavelet translations following cer-
tain rules. It can be considered as an all-pass filter, in which a
two- band Quadrature Mirror Filter (QMF) bank uses orthogonal
analysis filters in order to decompose data into low-pass and high
pass bands.
The high-pass and the low-pass filters provide respectively the
details (texture) and an approximation of the image.
In this study, we use the Haar wavelet function, which is given by
(4).

Ψ(x) =


1 0 ≤ x < 1/2
−1 1/2 ≤ x < 1
0 otherwise

(4)

The DWT expression to an image f(x,y) of size M×N is given
by (Yadav et al., 2015) and (Gonzalez and Woods, n.d.). A 2-
Dimentional (2D) DWT includes , one 2D scaling function ϕ(x,y)

and three 2D wavelet ΨH(x, y), ΨV (x, y) and ΨD(x, y).

Wϕ(j0, r, c) =
1√
MN

M−1∑
x=0

N−1∑
y=0

f(x, y)ϕj0,r,c(x, y) (5)

W i
Ψ(j, r, c) =

1√
MN

M−1∑
x=0

N−1∑
y=0

f(x, y)Ψi
j,r,c(x, y) (6)

Where, r and c refer respectively to the row and column number
in the image f(x,y). j0 represents the arbitrary starting scale.
Wϕ(j0, r, c) defines an approximation of the image f (x,y) at
scale j0.
W i

Ψ(j, r, c) defines diagonal, vertical and horizontal details for
scales j ≥ j0 .
i=
{
H,V,D

}
. Such that ΨH indicates variations measured in
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horizontal orientations, ΨV means variations in vertical orienta-
tions and ΨD shows the variations along the diagonal orienta-
tions. The criterion of the conservation of the spatial variability
of the texture intensity is used to define the level of composi-
tion. This allowed us to conclude that a one-level decomposition
is sufficient because beyond that, texture becomes too homoge-
neous (too smoothed).
The coefficients obtained with the approximation and the differ-
ent details of the image are then used in order to carry out a seg-
mentation.

2.2 Segmantation stept

K-means clustering is widely used in remote sensing image pro-
cessing for various tasks such as image segmentation, image clas-
sification, and image compression, due to its simplicity of imple-
mentation. It organizes the data of an image into K clusters. The
algorithm returns a data partition, in which the objects within the
same cluster are as close as possible to each other and as far as
possible from the objects of the other clusters. Each cluster of
the partition is defined by its objects and its centroid. The initial
position of the centroids conditions the final result. So, to solve
this problem various methods were proposed. These methods are
based on centroids initialization or multiple restart of the algo-
rithm.
Ursani et al. (Ursani et al., 2009)proposed an approach, referred
to as FOOS (Fusion Of Over Segmentation), which is a mean
of finding the K initial cluster centres that, unlike McQueen ini-
tialization, lead to a near- optimal solution, even if the desired
clusters do not lie in the spherical Gaussian distribution. We pro-
pose a FOOS-based land-sea segmentation by integrating colour
and textures features obtained from wavelet decomposition.
The FOOS method for clustering into K clusters consists of the
following steps:

• Clustering into P > K classes

• Clustering into Q = P + 1 classes

• Fusion of the two clustering in order to obtain P×Q classes

• Select the K greatest classes common to both clusterings.

• Take centroids of these K classes as the initial centroids of
the clustering K classes and rerun the k-means.

Besides, we introduce median filtering before the fusion of the
two over-segmentation results. The median filter is used in this
case to remove the isolated points before merging the two over-
segmentations. This makes it possible to reduce errors consider-
ably and to find the optimal centre of gravity used as centroids for
the final k-means clustering. The clustering result is represented
by the figure 3 where, we can clearly discriminate the dry sand
and the wet sand. In the following step, a mean of finding the
boundary between these two classes will be presented.

2.3 Edge detection stept

For the detection of the aforementioned boundary, we use a level
set formulation that gives an active contour model, which is called
an implicit active contour or geometric active contour model. For
the level set formulation of parametric active contour, the readers
are referred to (On the relationship between parametric and geo-
metric active contours, 2000). The idea of the level set method is
to represent an edge as the zero level set of a higher dimensional

Figure 3. Clustering result for P=7, Q=6, K=5

function, named a level set function (LSF) (Osher and Sethian,
n.d.) (Caselles et al., 1993) (Malladi et al., n.d.) and to formulate
the motion of the contour as the evolution of this LSF. However,
the LSF develops irregularities during its evolution. This destroys
the stability of the level set evolution. To ensure the LSF stabil-
ity, reinitialization, can be applied to periodically replace the de-
graded LSF with a signed distance function; see (Sethian, 1999)
for more details. Reinitialization can also be performed by using
the fast marching method as shown in (Osher and Fedkiw, n.d.).
Here, we use a variational level set formulation in which the reg-
ularity of the LSF is intrinsically maintained during its evolution.
The level set evolution is derived as the gradient flow that min-
imizes an energy functional with a distance regularization term
and an external energy that drives the motion of the zero level
set toward desired locations. This process is called distance reg-
ularized level set evolution (DRLSE) (Li and Xu, 2010). In this
formulation, an energy functional ε of a LSF φ, defined in an area
Ω, is expressed as shown in (7):

ε(φ) = µRp(φ) + λLg(φ) + αAg(φ) (7)

where Rp(φ) is the regularization term. It is defined with a po-
tential function p such that the derived level set evolution has a
unique forward-and-backward (FAB) diffusion effect, which is
used to maintain the desired shape of the level set function, par-
ticularly a signed distance profile near the zero level set. The
distance regularization effect eliminates the need for reinitializa-
tion and thereby avoids its induced numerical errors. Lg(φ) and
Ag(φ) refer to the external energy. The energy Lg(φ) computes
the line integral of the function g along the zero level contour of
φ.!It is minimized when the zero level contour of φ is located at
the coastline. The energy functionalAg(φ) is introduced to speed
up the motion of the zero level contour in the level set evolution
process, which is necessary when the initial contour is placed far
away from the coastline. µ ,λ andα are the weighting coefficients
of the following functions:

Rp(φ) ,
∫

Ω

p(|∇φ|)dx (8)

Lg(φ) ,
∫

Ω

gδ(φ)|∇φ|dx (9)

Ag(φ) ,
∫

Ω

gH(−φ)dx (10)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W4, 2018 
GeoInformation For Disaster Management (Gi4DM), 18–21 March 2018, Istanbul, Turkey

This contribution has been peer-reviewed.    
https://doi.org/10.5194/isprs-archives-XLII-3-W4-513-2018 | © Authors 2018. CC BY 4.0 License.

 
515



g is an edge indicator of the analysed image I.

g ,
1

1 + |∇Gσ ∗ I|2
(11)

δ(φ) is the Dirac function and H(−φ) the Heaviside function.
Gσ a Gaussian filter which is used to reduce the image noise.
The equation of the curve evolution is thus obtained by deriving
the total energy as shown in (12):

∂φ

∂t
= µdiv(dp(|∇φ|)∇φ) + λδε(φ)div(g

∇φ
|∇φ| ) + αgδε(φ)

(12)
We use LSF that take negative values inside the zero level contour
and positive values outside. The initial LSF is defined by the
function (13).

φ0(x) =

{
−2 x ∈ R0

2 otherwise
(13)

For more details to the definition of φ0(x) , readers are referred
to (Li and Xu, 2010). For the implementation, we use the same
parameter as in(Li and Xu, 2010). µ= 0.2, λ=5, α=-3 and ∆t =1,
but the initial contour is manually set. R0 is the part of Ω were
φ0(x) < 0 ; see the red line in figure 4.

Figure 4. Definition of φ0(x)

For the narrowband implementation of the DRLSE , (Li and Xu,
2010) denote by φi, j a LSF defined on a grid. A grid point (i,j)
is called a zero crossing point, if either φi−1,j and φi+1,j are of
opposite signs or φi,j−1 and φi,j+1 are of opposite signs. The set
of all the zero crossing points of the LSF is denoted by Z. Then,
the narrowband is constructed as shown in (14)

Br =
⋃

(i,j)∈Z

N
(r)

(i,j) (14)

where N (r)

(i,j) is a (2r + 1)(2r + 1) is square block cantered at
the point (i,j), r can be set to be the smallest value r = 1, in which
case the narrowband Br is the union of the 3×3 neighbourhoods
of the zero crossing points.
The results of this process are represented in figure 5.
The narrowband implementation consists of the following steps:
Step 1) Initialize the LSF φ(x) to the function φ0(x) Then, create
the initial narrowband B0

r =
⋃

(i,j)∈ Z0 N
(r)

(i,j), where Z0 is the
group of the zero crossing pixels of φ0.
Step 2) Update φk+1

i,j = φki,j +τ L (φki,j) on the narrowband Bkr
as suggested by the equation (20) of (Li and Xu, 2010)
Step 3) Determine the set of all the zero crossing pixels of φk+1

i,j on

Bkr , denoted by Zk+1 . Then, update the narrowband by setting
Bk+1
r =

⋃
(i,j)∈ Zk+1 N

(r)

(i,j)

Step 4) For every point (i,j) in Bk+1
r , but not inBkr , set φk+1

i,j to h
if φki,j > 0 , or else set to φk+1

i,j −h , where h is a constant, which
can be set to r + 1 as a default value
Step 5) Terminate the iteration if the zero crossing pixels stop
chaging for ? m consecutive iterations, or k exceeds a predifined
maximum number of iterations, otherwise, go to Step 2.

Figure 5. Final φ(x)

3. EXPERIMENTAL RESULT AND DISCUSSION

An automated or semi-automated detection of a coastline ought
to be validated using a ground truth. This ground truth can be
achieved using terrestrial surveys process or a manually detected
and validated coastline. In this study, the deficiency of a ground
truth motivated us to generate our own one. This ground truth is
obtained by averaging several manual detection results achieved
by different persons; see figure 6. Since a manual detection of
an objet depends on the visual capability of the operator, we col-
lected different outlooks and then took the mean of them.

Figure 6. Manually detected coastline

In figure 7, we show the results of the two different methods.
Red line refers to the semi-automated coastline obtained using
the approach presented in this paper, while blue line refers to the
generated ground truth.
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Figure 7. Semi-automated coastline vs manually detected
coastline

By analysing the figure 7, one can clearly find that the red line is
very close to the blue one. Visually, it is very difficult to make a
difference between them. This shows a good correlation between
the two coastlines.
By looking closer, we can see a slight offset between the two
curves in figure 8. We notice that the semi-automated coastline
vary along the length of the image, but over the width, it is con-
centrated between the pixels of rank between 260 and 275. This
is quite conformed to the ground truth.

Figure 8. Our approach vs manually detected coastline

The computed Root Mean Square Error (RMSE) is about 0.3716,
corresponding to an offset of 0.3716× 0.6 = 0.2m. 0.6 m is in fact
the image spatial resolution. This value of RMSE let us approve
the good correlation between the two coastlines. To approve the
goodness of the proposal method, we found the coastline with
different values of the initial contour.
In figure 9, the initial contour is set right to the coastline. The
domain R0, previously define has moved. Despite this change of
the initial contour,we found the same results with a good detec-
tion. Therefor, the initial contour ought to be along the coastline
to ensure a good detection.

Figure 9. initialization with a different value of φ0(x)

Figure 10. Final φ(x)corresponding to the new value of φ0(x)

4. CONCLUSION

The current study provides a semi-automated coastline detection
method using very high resolution images like those from Google
Earth. It is done by image processing and computer vision tech-
niques aiming at region segmentation and edge detection. We in-
tegrate both colour and texture information and perform a multi-
resolution analysis based on the wavelet transform. After the pre-
processing step, which aims to find the best features for segmen-
tation, we apply image segmentation in order to split the image
into different regions. The process of DRLSE is adopted to im-
prove the accuracy of the extracted coastline. The obtained re-
sults clearly show the effectiveness of this approach. Likewise,
many works show coastline detection process, without specifica-
tion of the key indicator that is used. The proposal brings a con-
tributions in this sense. As for future work, we intend to conduct
a diachronic study over several years to describe the coastline dy-
namics and thus to appreciate how it has moved over time
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