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ABSTRACT: 

 

Natural disasters such as flood are regarded to be caused by extreme weather conditions as well as changes in global and regional 

climate 

The prediction of flood incoming is a key factor to ensure civil protection in case of emergency and to provide effective early 

warning system. The risk of flood is affected by several factors such as land use, meteorological events, hydrology and the topology 

of the land. 

Predict such a risk implies the use of data coming from different sources such satellite images, water basin levels, meteorological and 

GIS data, that nowadays are easily produced by the availability new satellite portals as SENTINEL and distributed sensor networks 

on the field. 

In order to have a comprehensive and accurate prediction of flood risk is essential to perform a selective and multivariate analyses 

among the different types of inputs. 

Multivariate Analysis refers to all statistical techniques that simultaneously analyse multiple variables. 

Among multivariate analyses, Machine learning to provide increasing levels of accuracy precision and efficiency by discovering 

patterns in large and heterogeneous input datasets. 

Basically, machine learning algorithms automatically acquire experience information from data. 

This is done by the process of learning, by which the algorithm can generalize beyond the examples given by training data in input. 

Machine learning is interesting for predictions because it adapts the resolution strategies to the features of the data. This peculiarity 

can be used to predict extreme from high variable data, as in the case of floods. 

This work propose strategies and case studies on the application on machine learning algorithms on floods events prediction. 

Particullarly the study will focus on the application of Support Vector Machines and Artificial Neural Networks on a multivariate set 

of data related to river Seveso, in order to propose a more general framework from the case study. 

 

 

 

1. INTRODUCTION 

1.1 Big Data Analysis 

Climate change is a great determinant in the modification of the 

dinamic of water surface bodies.   

The effect of the increase of temperature risings, and extreme 

metereological events reflect in the increase in the number and 

intensity of flood events. 

A great effort of scientist and experts that deals on climate 

change and related effects is to predict the upcoming of this 

phenomena in order to furnish adeguate responses for the civil 

protection and mitigation of the effects. 

Prediction and protection in function to mitigate the effects of 

extreme events relaces the concepts and ideas of “Early 

Warning Systems” (EWS). 

A classical definition of Early Warning System is the 

technology and associated policies and procedures designed to 

predict and mitigate the harm of natural and human-initiated 

disasters and other undesirable events.  

Early Warning Systems (EWS) are well recognized as a critical 

life-saving tool for floods, droughts, storms, bushfires, and 

other hazards.  

The current classical concept of early warning systems 

underlines the presence of  physical models of the extreme 

event that are keen to predict the probability of the extreme 

events by reproducing and calculating a set of mathematical 

laws related to the phenomena. 

This models tent to be complex as the number of variables 

increses and as the number of components related to the 

phenomena rise up. 

The WMO defined  Multi-Hazard Early Warning Systems 

(MHWEWS)[1] the EWS that are capable to detect and predict 

the occurrence of different types of extreme events. 

The adoption of the of the MHEWS is also a key component 

and counciled in the adoption of the adoption of the Hyogo 

Framework for Action (HFA) 2005–2015 by 168 countries. 

Flood prediction is highly prone to the use of MHWEWS as the 

risk of flood is affected by factors such as land use, 

meteorological events, hydrology and the topology of the land.  

A strong problem on this kind of systems is to manage the high 

number and the different nature of the data used for the 

prediction in order to have a valuable integration and an 

effective and reliable prediction. 

Even if the use of physical and statistical models is typical the 

implementation of MHEWS, the current advances in data 

science and modelling techniques has provided the possibility 

to explore different approaches for the EWS (Lyong 2002,, Bell 

2012), as the case of Machine learning. 

This work wants to  propose the application of on machine 

learning algorithms on floods events predicion, using in 
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particular two strategies, the Support Vector Machines and the 

Artificial Neural Network. 

A case study on the river Seveso in Lombardy will be also 

presented. 

 

2. COMPLEX DATASET 

2.1 Definition of Complex Datasets 

As exposed in the introduction the prediction of the flood 

incomes by EWS could imply the use of data coming from 

different sources such satellite images, water basin levels, 

meteorological and GIS data, that nowadays can  easily 

produced by the availability of new satellite portals as 

SENTINEL and distributed sensor networks on the field. 

On data analysis point of view this means that EWS usually 

deal with complex and heterogeneus dataset. 

Complex datasets are characterized to be indeed multivariate 

and to collect an high amount of information. 

Multivariate data are sets of informations that deals with 

variable of different  kind and nature to describe a certaint 

phenomenon. 

In order to extract useful information that is feasible for the 

prediction of extreme events from complex dataset, is usually 

necessary to perform multivariate analysis (Anderson, 1958). 

Multivariate Analysis refers to all statistical techniques that 

simultaneously analysis of multiple variables that could 

describe the phenomen. 

 

 

2.2 Machine Learning for multivariate data 

Machine learning, is a branch of artificial intelligence (AI), 

focuses on finding algorithms capable of learning and/or 

adapting their structure based on a set of observed data, with 

adaptation done by optimizing over an objective or cost 

function (Jin yu, 1998). In the past couple of decades it has 

become a common tool in almost any task that requires 

information extraction from large datasets (To, 2017). 

Machine learning (ML) has having growing application as 

methodology and approach to analyse multivariate data-sets  

The numbere of application of the use of machine learning in 

flooding prediction are going to rise in the fields of early 

warning systems (Jangyodsuk,Clark 2016) as they provides 

increasing levels of accuracy precision and efficiency by 

discovering patterns in large and heterogeneous input datasets. 

Machine learning is usually applied to observational data, 

where the predictive variables are not under the control of the 

learner, as opposed to experimental data, where they are 

(Cohen, 1995). 

In several sense, for the prediction of extreme events ML are 

going to substitute the “mechanicistic” vision related to the use 

of models, with a more pronounced “black-box” approach, by 

which the importance stands in the capability of the prediction 

to follow the data variabily, rather then the physical 

understanding of the phenomena.  

In this sense ML adapts the resolution strategies to the features 

of the data. This peculiarity can be used to predict extreme from 

high variable data, as in the case of floods. 

 

3. OVERVIEW ON MACHINE LEARNING  

Machine learning has having growing application as 

methodology and approach to analyse multivariate data-sets as 

it provides increasing levels of accuracy precision and 

efficiency by discovering patterns in large and heterogeneous 

input datasets. 

The range of different problems that can be faced through 

machine learning is clearly large, and grows as a growing 

number of templates are discovered to address a large set of 

situations (To, 2017).. 

In particular Machine learning processes could be implied in 

three important operations: 

 Classification: in classification, you will need to 

categorize data into predefined classes) 

 Regression:regression techniques are used when the 

output is real-valued based on continuous variables. 

 Clustering: clustering is to determine the intrinsic 

grouping in a set of unlabeled data. 

These  mechanism can be highly useful in the prediction of 

events. 

 

3.1 The learning problem 

Standing to the definition of Mitchell (1997) a machine learning 

algorithm: "A computer program is said to learn from 

experience E with respect to some class of tasks Tand 

performance measure P, if its performance at tasks in T, as 

measured by P, improves with experience E."  . 

In general a computer program is said to learn from experience 

E with respect to some class of tasks T and performance 

measure P, if its performance at tasks. 

This is the basic assumption of a machine learning problem, and 

the fundamental goal of machine learning is to generalized 

beyond the examples in the training set (Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1. Machine Learning problem(To, 2017) 

 

As machine learning can face several problems, the task could 

be various, but in general it can be resumed in guessing a 

function f dependent by the input. 

The hypothesis about the function to be learned is denoted by h. 

The input vector is usually called as input vector, pattern vector, 

feature vector, sample, example, and instance. 

The function his though to be implemented by a device that has 

X as input and h(X) as output. 

The output may be a real number, in which case the process 

embodying the function, h, is called a function estimator, and 

the output is called an output valueor estimate or target. 

Both fand hare functions of a vector-valued input X = (x1,x2, . . 

. ,xi, . . . ,xn) which has n components. 

Sometimes we know that f also belongs to this class or to a 

subset of this class. The function h is based on a training set, Ξ, 

of m input vector examples. 
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3.2 Supervised and unsupervised learning 

There are two major types of learning processes. 

The first one is called supervised learning: the values of f for 

the m samples in the training set, Ξ are know. 

In the second one, called unsupervised learning, we simply have 

a training set of vectors without function values for them. The 

problem in this case is usually to partition the training set into 

subsets, Ξ1, . . . , ΞR, in a appropriate way. 

 

 

3.3 Supervised and unsupervised learning 

As it posed the problem of learning through machine learning 

has three main phases: 

 the training phase, during which the model of 

learning is built using labelled data; 

 the testing phase, during which the model is tested by 

measuring its classification accuracy on with held 

labelled data; 

 the deployment phase, during which the model is used 

to predict the class of unlabeled data. 

The three phases are carried out in sequence and iteratively 

(Figure 2) in a ML implementation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Machine Learning Algorithm phases 

 

Obviously different strategies and algorithms can be used to 

solve the learning problem. There are literally thousands 

available, and hundreds more are published each year 

(Domingos, 2017). But basically each one of them consists of a 

combination of three components. 

 representation: a classifier must be represented in a 

formal language that the computer can handle and 

belongs to a set of algorithms. This set coincides with 

the hypothesis space of the learner. 

 evaluation: an evaluation function (also called 

objective function or scoring function) is needed to 

distinguish good classifiers from bad ones. The 

evaluation function used internally by the algorithm 

could be different from the external one used for 

optimization. 

 optimization: a method to search among the classifiers 

in the language for the highest-scoring one. The 

choice of optimization technique is the key to 

improve the efficiency of the learner, and also helps 

determine the classifier produced if the evaluation 

function has more than one optimum. 

The different machine learning techniques or learners could 

vary on the representation component. In the following 

paragraphs two special learners that has been taken as case 

studies for the flood predictions will be analyzed. 

 

3.4 Support Vector Machines 

Support vector machine (SVM) is a supervised machine 

learning algorithm that can be used for both classificationand 

regression challenges. 

In SVM, the data points are plot in an N-dimensional space 

where N is the number of features and find a hyper-plane to 

differentiate the datapoints. 

SVMs understanding can start from this simple concept: a 

simple way to classify a set of points in a plan is to draw a line 

and call points lying on one side positive and on the other side 

negative. If the two sets are well separated, one would 

intuitively draw the separating line such that it is as far as 

possible away from the points in both sets (Figure 3.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Support Vector Machines:concept 

 

 

3.2 Artificial neural network 

An Artificial Neural Network (ANN) is a learning algorithm 

that is inspired by the way of biological nervous systems, such 

as the brain, process information. 

In simplified models of the brain, it consists of an input layer of 

neurons (or nodes, units),or one or two(or even three) hidden 

layers of neurons and a final layer of neurons and a final layer 

of output neuron (I): 

 

 

 

 

 

where () is called activation (or transfer) function, N the 

number of input neurons Vij the weights, xj inputs to the input 

neuron and  the threshold terms of the hidden neurons. 

ANN can be: 

 Feed-forward networks: in which graphs have no loop 

 Recurrent (or feedback) networks:in which loops 

occur because of feedback connections 

Articialneural networks (ANNs) can be used as tools for 

prediction, classification, and decision support. 
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4.     MACHINE LEARNING FOR FLOOD: THE CASE 

OF SEVESO 

 

4.1 Case Study: The Seveso River  

The Seveso is a 55-kilometre Italian river that flows through the 

provinces of Como, Monza e Brianza and Milan. It rises on 

Monte Sasso of Cavallasca, near San Fermo della Battaglia 

(Figure 4.1).  

The Seveso  has an area of approximately 226 km2, of  which 

about 155 km2 includes the mountain basin, quite steep, that 

develops almost entirely in the territory of the province of 

Como; while the remaining 75 km2 constitutes the valley basin, 

which is part of the province of Milano (Becciu, 2018). 

The Seveso river belongs to the Lambro-Seveso-Olona system 

that is not a natural watershed since the natural hydrology 

altered by human regulation of the territory around Milan city 

area. Olona and Seveso rivers did not happen to be natural 

tributaries of the Lambro river although they happen to be at the 

present.  

Olona river in fact flows in the so called southern Lambro river 

which flows into the Lambro river about 20 km upstream the 

Lambro confluence into the Po river.  

Seveso river is now connected to the Lambro-Olona system 

since its waters flow through the channel system beneath the 

Milan urban area and as Redefossi channel flows into the 

northern Lambro river (see Figure 5).  

At present, the Seveso River environment appears to be 

extensively compromized. The processes of urbanization and 

industrial development during the last 50 years have strongly 

reduced agricultural and natural landscapes features 

particullarly in the northern part near Milan (Schetke and others 

2010).  

Heavy rain forced levels of the Seveso River in Milan to 

overflow.  

In almost 140 years, 342 floods occurred (i.e. 2.4 per year) and 

108 since 1976. 

They are frequent, but often limited (although it is difficult to 

accept such 

a number of floods per year in a town of a self-proclaimed 

civilized country). However, large floods have also happened: 

one of the worst floods we registered was on 18 September 

2010, when major damages, in addition to destroyed cars and 

flooded garages and shops, were recorded on subway line 

(Becciu, 2016) 

Obviously this frequent floods of Seveso became a strong 

problem for the city and it is necessary to design systems that 

could timely predict Seveso overflows also standing the 

meterological conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4. The Seveso river 

 

 

 

 

 

 

 

 

 

 

 

 

       Figure 5. The Lambro-Olona-Seveso System   

 

 

4.2 ML to predict Seveso floods 

The risk of flood is affected by factors such as land use, 

meteorological events, hydrology and the topology of the land.  

To have a reliable flood prediction indeed is important to 

consider the multivariate nature of flood prediction.  

Particullarly, it can be argued that flooding is influenced by 

meteorological factors, but also by hydrological factors such as 

terrain slope, land use, vegetation, soil types, soil moisture, as 

well as hydrological processes related to run-off channels 

subject to flooding.  

Figure 5.1 proposes a model for the flood prediction of Seveso 

rivers, that matches this two categories of input into a Machine 

Learning prediction algorithm based on ANN and Support 

Vector Machines. 

The model can be considered a ML translater of Rainfall-runoff 

models (Knapp, 1991) describe a portion of the water cycle and 

therefore the movement of a fluid - water - and therefore they 

are explicitly or implicitly based on the laws of physics, and in 

particular on the principles of conservation of mass, 

conservation of energy and conservation of momentum. The 

basic equation of the model is: 

 

  

 

 

    (II) 

 

where W(t) is the volume of water stored in the catchment at 

time t, p(t) is rainfall, q(t) is the river flow at time t and k is a 

constant parameter with the dimension of time (if the parameter 

was not constant the model would not be linear). 

Rainfall-Runoff modeling is a classical approach in hydrology: 

such kind of models may include other input variables, like 

temperature, information on the catchment or others. 
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Figure 6.  The Rainfall- Runoff Model 

Several variants of the linear reservoir modeling scheme can be 

introduced, for instance by adopting a non linear relationship 

between discharge and storage. This non linearity can be due for 

example to unpredictability of extreme events or non linear 

correlation between rainfalls and flow, on which can be called 

as the Quantitative Precipitation Forecasting model (QPF) (). 

The use of QPFin flood forecasting plays an important role, 

allowing for extension of the lead-time for the river flow 

forecast, which enables timelier implementation of flood control 

measures (Wang, 3000).  

A reliable QPF is not an easy task to obtain due to rainfall being 

one of the most difficult elements of the hydrological cycle to 

forecast. Much uncertainty still affects the performance of 

rainfall prediction models (Reynolds, 2003). However, 

numerical weather prediction models such as the timely use of 

remote sensing observations (for example radar data and 

satellite images) allows the issue of short-term forecasts (Xue et 

al., 2000).  

In the recent past, empirical, nonlinear, data driven models, like 

Artificial Neural Network (ANN)  and Support Vector Machine 

(SVM) are being widely used to address the shortcomings of the 

parametric approach.  

As Machine learning algorithrms their performance depends on 

the available data to be "learned”, without any a priori 

hypothesis about the kind of relationship, which is allowed to 

be complex and nonlinear.  

A the machine learning algorithm learns about its environment 

or a dynamic system through an iterative process of adjustments 

applied to its weights and biases.  

The environment is characterised by a set of exemplars, which 

is typically a group of patterns of „environmental‟ variables. 

The algorithm becomes more “knowledgeable” about its 

environment after each iteration of the learning process. Like 

learning in human beings learning is an inferred process which 

cannot be perceived directly, but can be assumed to have 

happened by observing changes in performance (Zurada, 1992). 

 

4.3 Use of Satellite Data  

As mentioned in the previous paragraph, satellite multisensor-

data can can be used to investigate the evolution in time and 

space of water bodies and water balance 

Particullarly the  internal calibrationof a distributed 

hydrological water balance model using satellite land surface 

temperature images (Mancini, 2013). 

Although the output from satellite and radar images provides 

useful information on precipitation patterns they do not usually 

provide a satisfactory assessment of rain intensities. 

Figure 5.2 depicts the role of remote sensing in a rainfall- runoff 

model (Mancini, 2013). 

The strength of remote sensing techniques lies in the possibility 

to provide both spatial and temporal views of surface water 

quality parameters that is typically not possible from in situ 

measurements.  

Besides water quality parameters, remote sensing enables us to 

investigate land cover dynamics and evolution; depending on 

the extent of target areas, a wide variety of satellite instruments, 

mostly coming from spatial medium resolution sensors are 

available for describing land cover at catchment scales 

(Giardino, 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  Use of  Remote Sensing Images for flood  prediction 

 

For the EU countries indeed there is the possibility to access 

also to satellite data of Copernicus. 

Copernicus, previously known as GMES (Global Monitoring 

for Environment and Security), is the European Programme for 

the establishment of a European capacity for Earth Observation.  

Copernicus can provide a  complex set of systems which collect 

data from multiple sources.  

It consists of a complex set of systems which collect data from 

multiple sources: earth observation satellites and in situ sensors 

such as ground stations, airborne sensors, and sea-borne 

sensors.  

Particullarly SENTINEL-3, can provide optical and altimeter 

mission monitoring sea and land parameters. 

  

5.  METHODS 

5.1 Feature Set and Problem Setup 
 

For the Seveso river case study the feature vector has been 

composed by the set of metereological variables 

particullarly discharge d(t), temperature T(t) and precipitation 

P(T)  (especially for snow events), and the hydrodynamic 

variables W(t)  volume of water stored and q(t) river flow. 

Furthemore LIDAR satellite images of the river shapes has been 

taken from the Copernicus portal in order to get informations on 

evotraspiration, and solar radiation reflected and transmitted. 

The outputs are the flood prediction risk R considered as a 

boolean variable in a binary classification problem and the 

flood return period Tm. 

Particullarly the binary classification problem has been 

addressed- 

In its simplest form, the binary classification reduces to:                                        

given a pattern x drawn from a domain X, estimate which value 

an associated binary random variable y ∈  {±1} will assume.. 

The output set has been evaluated applying a ANN and SVM 

algorithms. 

 

5.4 Evaluation 
 

All the proposed algorithms have been evaluated in term of 

power of prediction and accuracy. The basis for the evaluation 

has been the confusion matrix as illustrated in Figure 5.9. 
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On the columns is represented the Predicted Class while in the 

rows the Actual Class. 

Particullarly  precision, recall   and f-measure defined as: 

 

 

 

6.  RESULTS 

Table 1 resumes the results of the perfomance 

evaluation of the two techniques. 

 

 PRC RCL f-measure 

ANN 77,23% 83,80% 80,41%+3,13% 

SVM 79,23% 82,90% 87,52% 

 

  Table 1. Machine Learning algorithms prediction result  

 

6. CONCLUSIONS 

Machine Learning techniques provide a feasible 

example of alghoritms that could easily predict  

extreme events by using multivariate datasets. 

The work has explored particullarly the use of two 

algorithms indeed Artificial Neural Networks and 

Support Vector Machines. 

In particular the work has demonstrated the 

possibility to address the non-linearities of the 

predicition of extreme events by data driven 

prediction techniques.  

An ANN is able to handle non-linearity and 

automatically adjusts to new information, while 

generally requiring little computational effort (Rietjes 

and de Vos, 2008).  

ANNs are widely accepted as powerful ways of 

modelling complex non-linear and dynamical systems 

for which there   are large amounts of sometimes 

noisy data (Chen et al., 2002). 

They are pedagogic as opposed to decompositional; 

whereas decompositional methods knowledge of the 

domain or the physical characteristics of the problem 

are needed, a pedagogical method requests only data 

and does not depend on knowledge of the 

relationships between factors that affect the problem. 

ANN can thus be trained without having intimate 

knowledge of the hydrological or other aspects of 

flood forecasting  

On the other way SVM can represent a potential 

alternative which relieves the user from a time-

consuming trial and-error procedure of synthesizing 

the suitable network architecture as in ANN without 

compromisingon the prediction accuracy. 
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