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ABSTRACT: 

 

Most of the landslides are triggered by rainfall, earthquake or the joint effect from both. Landslide inventory map 

by GIS via remote sensing offer the spatial distribution of it across certain external event. The landslide model thus 

been trained to link the occurrence and non-occurrence of individual mass wasting on top of proposing factors/layers. 

Chosen factors with various calculated weighting values becomes as the base of predicting the region and condition 

for future landslide called as Landslide Susceptibility Mapping (LSM). It is found that the temporal factor has less 

AUC values than spatial factors at Taiwan, after examining the 20 years catalog and thousand cases of landslide 

island wide. Different resolution of DEM and NDVI from satellite image, hyper spectrum and LiDAR are utilized 

to resolve the degree of impact of it. The require accuracy and resolution of base map is directly link to the accuracy 

and also minimum mapping size of catalog, and the non-linear relationship of external factors still cannot be well 

predicted by the training model. To achieve better accuracy of LSM the temporal and non-linearity properties should 

be addressed, especially under the influence of global warming. 

 

 

 
INTRODUCTION: 

 

Accuracy of landslide predicting model is generally 

around 80%, it is depending on the difference of time 

and location between the training and testing model. 

Due to the complexity of nature environment and 

triggering factors. Such work could be group into two 

sub-domains, one is to predict the upcoming landslides 

at the same study region; or to calculate the possibility 

of landslide occurrence at other region. Either one of 

these cases that require to build a training model with 

known parameters, such as terrain, geological structure, 

rainfall etc. There are more than 64 parameters could 

affect the occurrence of landslide, and some of it cannot 

be quantified (Koukis & Zioukas, 1991). Not all the 

factors shall affect the occurrence of a landslide, for 

example that rain infiltration to trigger the landslide is 

only by considering the soil, slop and rainfall properties 

(Iverson, 2000). Earthquake induced landslide is 

correlates with distance from the earthquake source, 

slope steepness, and rock type (Keefer, 2000). The 

prediction of landslides, caused by interaction of 

factors vary over areas and time, pose limitations to the 

tasks of mapping and analyzing the spatiotemporal 

patterns of relationships between landslide occurrence 

and causative factors (Metternicht et al., 2005). The 

occurrence of landslides in general is a function of the 

interaction of natural phenomena such as unfavorable 

lithology, stratigraphic sequence, structural makeup, 

geomorphological setting, earthquake, rainfall, etc. 

(Ayalew et al., 2004). For layers super impost-based 

analyses, factors are directly or indirectly related to the 

formation of landslides are named as event-controlling 

parameters. It is believed that the accuracy of 

predicting model increases when all event controlling 

parameters are considered within the process, but it is 

difficult to get all the required data in time and also 

with required resolution. Razak (2011) indicates that to 

analysis the topographic feature link to the landslide vis 

LiDAR data, require 1.69 points/m2. However, it takes 

at least 5.69 points/m2 to perform evaluation with much 

detail aspect. The various spatial resolution of LiDAR 

data taken at the same location in Southern Taiwan is 

shown in Figure 1, the detail structures and minor golly 

could be found on right panel (Yen, 2005). For this 

reason, some of the analyses depend only on lithology 

and the topographic attributes of the region such as 

elevation, slope gradient, aspect and curvature. 

Therefore, the predicting accuracy is not satisfied and 

to tune the model of better accuracy by considering in 

depth parameter is the aim of this work.  

-

  
Figure 1: Comparison of two grey shadow charts with 

various LiDAR resolution data  

(a) 5 m; (b) 1 m interval (Yen, 2005). 
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DATA AND ANALYSIS METHOD: 

 

Aerial LiDAR with 1-meter ground resolution gathered 

at 2014 is utilized as base data set, meanwhile remote 

sensing imagery of 2-meter resolution acquired at 2015 

to detect the change of land surface thus to build up the 

landslide catalog for model accuracy checking. The 

distribution of slope in the study area is shown at Figure 

2. The high rugged testing region is located at Southern 

Taiwan, more than 30% slope count for 2/3 of the 

region. Two more aerial LiDAR acquired at early and 

late 2015 is exploited to act as information source of 

detecting temporal discrepancy of DTM and also 

parameters that derived from DTM such as slope, 

aspect etc. 

 

  
Figure 2: The slope distribution layer of the study area 

located at Southern Taiwan. 

  

Study flow chart of this work is illustrated at Figure 3, 

the operation of converting DTM into hydraulic 

parameters is carried out by Hydrology tools of ArcGIS. 

The handling parameters of this task have set the same 

for all the data set to eliminate the possible human 

caused bias. 

  

 
Figure 3: The working flow chart and relationship to 

the imported data. 

 

Imported DTM data is automatically processed by 

Wavelet to detect the location and size of gully. Result 

of this GIS output reveal the correlating relationship 

between extracted hydraulic system via various DTM 

resolution listed at figure 4. It is found that the detected 

noise is higher at coarse resolution data. This outcome 

requires advance processing to match the ground truth 

condition. 

 
Figure 4: Automatic extract hydraulic gully from (a) 1 

m resolution DTM, (b) 5 m resolution DTM gathered 

at the same place and time. 

 

Another important information of land cover is derived 

from NDVI (Normalized Difference Vegetation Index) 

via multispectral remote sensing images. Quad tree-

Based segmentation to perform the multiresolution 

segmentation with eCognition software, the result 

shown at Figure 5. Tree type and CHM (Crown Height 

Model) is also considered. 

 

 
Figure 5: The layer of NDVI segmentation to 

present the status of land cover. 

 

Layer of rainfall is interpolated from official rain gauge 

records of the time. A strong rainfall event that is 

defined as more than 200 mm/day, an example of 

rainfall layer at the study area is shown at Figure 6. 

 

 
Figure 6: The interpolated rainfall layer for an 

example strong rainfall event at study area. 

 

The yearly landslide catalog of the study area is listed 

at Figure 7, this area is stroke by heavy rainfall caused 

by typhoon at the year of 2009 and 2010, this is the 

most important causative factor of frequent landslide at 

the study region. 
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Figure 7: The yearly landslide catalog at study 

area. 

  

The gully is extracted from three stages of aerial 

LiDAR data first, after the redeem handling with 

established rules from ground truth the gully density 

map of three different time is deploy at Figure 8 to 10, 

respectively. Density of gully superimposed on top of 

layers of all kind to establish a training model of the 

same year of data gathering and also included the data 

at matching time of trigger factor. Therefore, three 

models with various factor ranking and also the 

weighting coefficient is assembled. 

 

 
Figure 8: The gully density calculated from LiDAR 

data of year 2010. 

 

 
Figure 9: The gully density calculated from LiDAR 

data of March 2015. 

 

 
Figure 10: The gully density calculated from LiDAR 

data of Dec. 2015. 

Table 1: Evaluating table of all kinds impact factors to 

landslides 

 

When individual factor be examined with the ratio of 

landslide occurrence, the 15~40% slope dominated. 

The rainfall 480~540 account for almost 46% of newly 

landslide and the mixed forest contribute the least area 

of collapsing as shown at Table 1. This statistic 

outcomes demonstrate the disadvantages of single 

factor analysis. While classify the degree of gully 

erosion by 0~0.5, 0.5~1, 1~1.5, 1.5~2 and above 2 

meters into five groups and defined as slight, mild, 

moderate, seriously and serious. Land cover with 

shrubbery have weaker resistance to erosion. Slope 

from 15~55% have most of landslide occurred but 

slope above 55% have very little landslide as Table 2 

shown. 

 

By compare the gully density of these three stages, it is 

found that most of the newly landslide is occurred 

within gully density of (12~16 km/km2) and it is 

concentrated at the region of upstream which are 

dominated by head ward erosion from March to 

December 2015. But 20.58% collapsed ratio located 

within gully density of 6~8 (km/km2), it also adjacent 

to the main river that indicate the landslides are caused 

by slope foot erosion instead of head ward erosion from 

2010 to 2014 shown at Table 3.  

 

The density of gully gradually decreased with time, the 

mass area of newly landslide at 2010 is the 

consequences of typhoon Morakot at 2009 that brought 

record breaking precipitation at the region, 3060 mm, 

this is also why the identified gully density is higher at 

this stage of time. 

 

 
Table 2: Degree of gully erosion to the class of 

all kind factors 
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Table 3: Newly landslide area to the gully density 

 

CONCLUSION AND DISCUSSION: 

  

The accuracy of the landslide prediction model is 

mostly done by ROC method (Corsini & Mulas, 2017). 

By calculating the area under the ROC curve (AUC), 

higher the area the better predicting result. When a 

landslide catalog caused by single trigger event 

(earthquake or rainfall) been separated into two parts to 

serve as training and testing set. Then calculate the 

contribution of landslide influence factors and ranking 

by the degree of its importance. Once the model been 

constructed then alter the layer of triggering factors to 

predict the potential of landslide both at location and 

magnitude. If the prediction is perfectly match to the 

reality then AUC is 100%, such process has been 

introduced to form an early warning system for 

evacuate civilian few hours before the possible nature 

hazard at Taiwan. While using result of training set to 

map the future landslide potential for the same place, 

the AUC is around 80%. If the equation is utilized to 

forecast the landslide potential at different place, then 

the AUC might drop to 70~75% at Taiwan (Lee, 2016).  

The unstable index method to reveal the weighting of 

various impact factors shown that both temporal and 

spatial resolution of base data shall control the degree 

of LSM accuracy. For the examined case, the rainfall is 

the most important trigger factor for landslide 

occurrence at Taiwan. The development of gully that 

could only be found by high resolution LiDAR also 

imply that head ward erosion is the key feature of 

landslide at slope 15~55%. However, if the 

precipitation exceeds the threshold then the cut off of 

slope foot.  

 

Rainfall, earthquake and combination of both trigger 

vast amount of mass wasting at Taiwan, it is highly 

dependent with the magnitude and location of the event. 

The non-linear property is also found, critical 

phenomena are found at amount of rainfall and slope. 

Neither the larger the amount of rainfall nor the higher 

of the slope shall hold more amount of landslide. The 

Peak Ground Acceleration (PGA) associated with 

earthquake needed to be considered to evaluate the 

LSM, but the effect of it decreased with time. The 

degree of this influence drop back to normal within five 

years, for the case of magnitude 7.3 Chi-Chi earthquake 

at 1999 (Lin et al., 2004).             
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