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2 Selçuk University, Engineering Faculty, Department of Geomatics,
Selcuklu 42250, Konya, Turkey - sanlioglu@selcuk.edu.tr

KEY WORDS: Landslide Monitoring, Point Cloud, Plane Fitting, Deformation, Mobile LiDAR

ABSTRACT:

Landslide monitoring and assessment of the highways retaining walls are a crucial task. Because there exist a risk and danger with
regard to the movement of the wall to the highway by landslide force that may spread further. To evaluate the changing, movements
have to be monitored. For this reason, we practised mobile LiDAR surveys on the landslide effected wall on the highway. The usage
of the mobile LiDAR systems have significantly increased in recent years, especially for road management. Currently, mobile LiDAR
technology is capable of measuring the earth surface with high precision and density as a 3D point clouds. As stated in this study,
the point cloud data processing have been analysed further and the wall surface points fitted to a plane object for monitoring of the
landslide effects. This study focuses on different plane fitting algorithms which represents the retaining wall, a performance assessment
and evaluation of the deformation between two plane models. The analysis indicates that the uncertainty of the measurements between
the two epochs on stable areas survey was within ±2 cm. According to the experimental results, the proposed methods performed
promising results that can be used for monitoring of retaining walls for fast processing and assessment.

1. INTRODUCTION

Retaining walls are constructed mostly for holding the soil mass
on highway constructions to be retained at different levels on
the road sides. They are used to hold soils on high or unde-
sirable slopes inside mountainous roads due to the difficulties
of road design. Retaining walls are also supporting structures
planned to keep under the control of the landslide materials at
landslide regions. The difficulties of monitoring landslides are
occurring when the terrain is complex, time consuming opera-
tions and workforce. Furthermore, it is rather quite difficult to
do measurement in flowing traffic and raises the risk. The sur-
vey of geometric characteristics of the wall construction is made
to verify the stability from the landslide destructive effect and to
guarantee a health of the walls. The survey of the wall surface
characteristic is done with regard to allow highway traffic safety
condition. Deformation shifts and cracks of the wall are should
be examined carefully. In particular the evaluation of the surface
roughness has acquired a remarkable importance in control activ-
ities of the wall structure and in monitoring.

Light Detection And Ranging (LiDAR) surveying techniques en-
able to acquisition of an accurately georeferenced set of dense 3D
point clouds (Canaz and Habib, 2014, Canaz et al., 2015, Erbas,
2016). The surface changing studies are possible to identify dis-
placements when two or more surface models generated from dif-
ferent point cloud source such as airborne (ALS), ground (TLS)
or mobile lidar systems (MLS). LiDAR based surveys are able
to measure vertical faades or slopes excluding the ALS (Karaba-
cak et al., 2011). TLS and MLS surveys reach a centimetre as a
survey grade on positional accuracy for ground deformation stud-
ies (Wang et al., 2011, Julge et al., 2017).

Particularly, a Mobile LiDAR measurement system (MLS) which
∗Corresponding author

is the combination of a Global Navigation Satellite System
(GNSS), an Inertial Measuring Unit (IMU) and LiDAR scanners
on a moving vehicle, makes possible effective and complete 3D
data collection (Wang et al., 2014, Kumar et al., 2014). Urban
object changings can be detected automatically from MLS gen-
erated point cloud on complex street environment (Xiao et al.,
2013).

Recent researches have examined for monitoring walls with pho-
togrammetric methods which are one of them that create 3D spa-
tial data information about surfaces. Lately, improvements in a
computing and graphical processing have allowed digital pho-
togrammetric methods to be of comprehensive use (Oats et al.,
2017). However, traffic or highway standards do not allow for
measurements on road, due to the time consuming for productiv-
ity. In this study, we have examined of mobile LiDAR technique
are examined for retaining wall monitoring.

1.1 Objectives of the study

To increase the reliability and the quality of the landslide anal-
ysis, the observed point clouds have to be created as a geomet-
ric model. Outliers have been considered in LiDAR observation
points which is far away from other observations on the plane.
Generally, measurement limitations of the sensor, 3D features on
wall surface like rocks and concretes, multiple reflectances can
produce off-wall and noisy surface points that also appear to be
outliers. Local outliers mostly cannot be guaranteed to filter out
from point clouds (Sotoodeh, 2006). We aim to find coherent
plane parameters which cannot lead to an inconsistent and mis-
leading result from noise and outliers. Robust regression method
which is introduced by (Huber et al., 1964) is mostly used es-
timation technique for various disciplines. Proposed method is
improving the robust estimators. Robust regression M-estimator
based algorithm implemented in this paper to construct retaining
wall for monitoring of deformation between two point cloud data.
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1.2 Landslide area

The landslide region at Taşkent where is a province of Konya
in Turkey, was selected for the implementation of the landslide
retain wall displacement analysis since the incessantly events of
mass movements at this region (Figure 1). The highway is con-
necting the provinces and towns in southern part of middle Taurus
mountain chain. It is the linking way for the six towns through
Taşkent.

a

b c

Figure 1. Location of the study area a) Location of Taşkent
province in Turkey, b) UAV derived Orthomosaics, c) Digital

surface model.

2. MATERIAL AND METHODS

2.1 Preprocessing of Point Clouds

The raw LiDAR point cloud data can include outliers, due to
the deformation of several reasons (Wang and Xu, 2017). Most
current plane estimation methods are based for least square es-
timation or their variants. Therefore, outliers and noisy points
in point cloud can cause to the false plane orientation (Demir,
2014). Hence, for the first time, filtering outliers and noise tech-
niques applied for the 3D point cloud, based on which the neigh-
bourhood average distance and deviation (Rusu et al., 2008). As
a result, only points which supplier the condition for threshold
value included for the further analysis (Figure 2).

The proposed method is based on the recognize the vertical pla-
nar feature, due to the highways nearby the highway generally
created on steep slope faades to stop mass. Accordingly, ground
points are not interest on this research and has to be classified.
Cloth simulation point cloud ground filtering method have been
implemented on the point clouds (Zhang et al., 2016). After the
filtering ground points, density based segmentation is possible
to recognize vertical plane from intensive data as a line in 2D.
It’s a way for quick interpretation of the planes instead of anal-
yse dense raw point cloud (Figure 3). Density estimations can
be computed by account of the bins rectangular grid area or k-
nearest search algorithm. Both of these methods are fast for the
density calculations. Precise surface density estimation is done
by density = N/(π ∗ R2) formula, here N is neighbour points
inside sphere and R is the sphere radius value which is given
by user.Further analysis on roughly segmented point cloud need
to unravelling for planarity feature to estimate on retaining wall

a)

b)

25 m

25 m

outliers

outlier free:6%

Figure 2. Outliers detection and removal a) raw LiDAR data, b)
outliers free point cloud ,removal percentage 6%.

surface. 3D local neighbourhood can be find as k nearest neigh-
bours or in the given spherical radius (Figure 4) (Pauly et al.,
2002). Various distance calculation methods can be used here,
such as Euclidean, Minkowsky, cosine, Mahalanobis, Cook’s and
Chi square (Hu et al., 2016). Since the Euclidean distance func-
tion is the most widely used in a distance metrics for k − NN ,
we’ve also used the Euclidean distance metric.

a) b)

c) d)

Figure 3. Surface density estimation a) 1st epoch MLS data, b)
2nd epoch MLS data c) 3D histogram plot of density, d) 2D
interpreting plot of density with image2D command from R.

2.5 m

knn

radius

query point

Figure 4. Query point searching algorithms, k − nn, radius
based.

2.2 Least Square estimation for the best-fitting plane

The least-squares coefficients in multiple linear regression plane
are found by solving the algebraic equations for the fallowing
intercept d and the slope coefficients or called as normals, a, b, c
. The ordinary least square (OLS) in theory is that the height
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component (z) of the point cloud is functionally dependent on
the x and y components. The Hessian normal form is considered
convenient general form (Equation 1) of plane model (Nurunnabi
et al., 2012).

ax+ by + cz + d = 0 (1)

For the most of the situations and complex geospatial data do not
fitting perfectly as a planar on point clouds since there is mea-
surement uncertainties in data. Thus total least squares approx-
imation which minimizes the residuals in a direction orthogonal
used to the fitting a plane. If the outliers eliminated from point
clouds from manually, planes could be recognizable and also least
squares estimation should be used for fitting in practice.

2.3 Principal Component Analysis (PCA)

PCA determines the numerous compounds of the variables in spa-
tial data that include the information of geometric shapes, in the
sense of irregularity in the data. The hypothesis is that useful in-
formation equivalent to the irregularity. In general, PCA is used
for data dimensionality minimization and explanation of the high
and dense point cloud data. Planarity characteristics depend on
the 3D point cloud local neighbours covariance which are pro-
vided from the eigenvalues (λ1, λ2, λ3) as following equation.

Pplanarity =
λ2 − λ3

λ1
(2)

where λ1, λ2 and λ3 are the eigenvalue of the neighbourhood
covarience matrix.

Point cloud as a matrix form (P ), the covariance matrix (C) of P
can be written as following equation,

C(P ) =
Σwi(pi − p)T (pi − p)

Σwi
(3)

where p, mean of the point cloud x, y, z columns seperately,
wi weights and it is mostly equal to 1.

The obtained eigenvalues which computed from diagonalized
matrices, are greater than or equal to zero, λ1 ≥ λ2 ≥ λ3 ≥ 0.
(Lin et al., 2014)

The mathematics of PCA can be summarized in (Nixon and
Aguado, 2012) as the following eight steps :

• Obtain the data P from MLS with coordinate columns

• Compute the covariance matrix CX .Information about the
linear independence between the features

• Obtain the eigenvalues by solving the characteristic equa-
tion det(λiI − CX) = 0

• Obtain the eigenvectors by solvingwi in (λiI−CX)wi = 0
for each eigenvalue. Eigenvectors should be normalized and
linearly independent

• The transformation is obtained by considering the eigenvec-
tors as their columns

• For classification applications, select and apply planarity
function for λ1, λ2, λ3 as shown in Equation 2.

While obtaining PCA components, it has been realized that sensi-
tive to outliers, corner points or missing data and density. There-
fore, full featured classification of planarity is not possible with
only PCA method (Nurunnabi et al., 2012). Thus in this paper,
we proposed robust plane regression fitting method to estimate
plane normals as in Section 2.4.

R programming language was used for implementation of the
PCA due to the high functionality, efficient architecture of R and
easy to use its own functions (R Core Team, 2017). The base-
core software in R, principal components analysis written as in-
built function such as, prcomp, princomp and similarly eigen

functions.

2.4 Robust Linear Regression Method (PCA-RLM)

Multivariate linear least-squares regression method is sensitive
for outliers. In order to remove the outlier effects or to minimize
the corruption, several alternative regression methods described
in literature (Venables and Ripley, 2002, Cevat and Yetkin, 2006,
Gökalp and Boz, 2005). Robust estimation is an alternative ap-
proach to local outliers and the heavy-tailed error distributions
that tend to generate them. Properly formulated, robust estima-
tors are almost as efficient as least squares when the error dis-
tribution is normal and much more efficient when the errors are
heavy tailed. Robust estimators hold their efficiency well because
they are resistant to outliers. Robust parameters require intense
computation time than least squares estimation. However, cur-
rently, in this case computing powers have increased effectively.
Also, different modern statistical software packages include sub-
stantial functionality for robust estimation processing on point
clouds (Zeybek and Şanlıoğlu, 2017). Robust regression is im-
plemented by iterating re-weighted least squares (IRLS). MASS

package from R Programming language has included rlm com-
mand. There exist on several functions for IRLS applications.
We have used bisquare weights from PCA segmented point data
(PCA-RLM). The weight function of the bisquare is given as fol-
lowing equation (Equation 4)

wB(e) =

{[
1− ( e

k
)2
]2 for|e| ≤ k

0 for|e| ≥ k
(4)

Due to the strong weighting (wB) of bi-square estimator, it has
been chosen for large outliers that k = 4.685σ value 95% pro-
tects the function on behalf of e errors or outliers (Fox, 2002).

2.5 RANSAC

One of the most common methods for estimating a model
from 3D point cloud data is the Random SAmple Consensus
(RANSAC) (Saval-Calvo et al., 2015). This method and pro-
cedure was proposed by (Fischler and Bolles, 1981) and imple-
mented for point sets (Schnabel et al., 2007). The RANSAC al-
gorithm is following two step procedure and progress iteratively
through to fit best plane (Li et al., 2016, Tarsha-Kurdi et al.,
2007):

• Firstly, minimal point data (for plane it is 3 points) ran-
domly picked out from the point cloud. The plane model
can be computed from this sample set. The cardinality of
the sample subset is the small-scale adequate to determine
the model parameters.
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• Secondly, validation for points which have includes plane
characteristics of the fitted plane; the distance to the fitting
model is computed for designation to the plane model. Out-
liers has to be disregarded as given error threshold limit from
the fitted parameters. These two steps are iteratively contin-
ued to the convergence or iteration limit for fitting best plane
fit to the data set.

This method is effectively determining the probability based
point clouds which presents the function of plane model. How-
ever, it depends on the error threshold limits. Thus, we used ro-
bust regression models to estimate plane model and compared the
results with RANSAC fitted plane.

2.6 Accuracy and Quality Assessment

In theory, the objective of the least square adjustment method is
the sum of the squares of the errors times their respective weights
minimization for each normal equations (Long Nguyen et al.,
2017). Hence, mean error values of each point of planes are com-
puted to explain the differences of the transformation parameters.
Mean error (ME) value of each method(RANSAC & PCA-RLM)
is calculated by using the following equation:

ME =

n∑
i=1

xi ∗ a+ yi ∗ b+ zi ∗ c− d (5)

where xi, yi and zi are the point coordinates of which belong
to the plane
a, b, c and d are the plane normals.

It is important to check the stability of the model fitting pa-
rameter estimation using algebraic equations. To achieve this,
a best-fit-plane distances were computed for each point distance
to the model plane. The distances were derived using the Equa-
tion (6) where computed distance determined through the assess-
ment pipeline for comparison plane fitting quality. To arrive at
the following expression for the distance from each point from
point cloud Pi = (xi, yi, zi) to the plane has been described.
The quality of an extracted plane is assessed by the standard de-
viation.

dist =
|axi + byi + czi + d|√

a2 + b2 + c2
(6)

2.7 Detection of Deformation

Point cloud comparison for change detection or to recognize dis-
placement can be classified in three groups. These are,

• Cloud-Cloud, point cloud comparison between two different
epochs, compare closeness of each point, splitting displace-
ment (x, y, z, components)

• Cloud-Mesh or vice versa, comparison of triangulated mesh
through out mesh surface normal to the closest point of sec-
ond epoch inside point cloud

• Mesh-Mesh, comparison of the closest surface of mesh ver-
tex by TIN surface normal.

Another comparison method is difference of DEM (DoD) analy-
sis which is exclude in this study due to the focus of this compari-
son method is investigation of vertical plane changing (Figure 5).
The main comparison method is discussed here mesh compar-
isons to detect displacement on fitted different epochs of retaining
wall.

25m

a

b

Drainage

Channels

Drainage

pipe

Road Surface

Retain Wall

Figure 5. a) Side view of the retain wall design, b) acquired
MLS point cloud data and close up to retain wall.

Side view

Second epoch
First epoch

a b

c d

Figure 6. Side view of the wall displacement models, a)
horizontal shifting, b) vertical shifting, c) rotational
displacement, d) mixed displacement and rotation.

3. EXPERIMENTAL STUDY

3.1 Data Acquisition

Mobile Laser Scanning (MLS) systems provide new, rapid and
flexible opportunities in terms of collecting high resolution data
and information of the surveying earth. The RIEGL VMX-450
Mobile Laser Scanning System (MLS) has been used with high
measurement rates for providing dense, accurate, and excessive
feature data at normal traffic driving speeds. MLS 3D data collec-
tion, featuring high accuracy and high resolution, provides a basis
for a mapping of applications (Figure 5). The surveying of laser
observations have remarkable ability to acquisition of vertical re-
taining walls. The RIEGL software packages were used on data
processing. After relative adjustment, the final point cloud accu-
racy was achieved 0.009 m (east), 0.011 m (north), and 0.025 m
(up) (Zeybek, 2017). Matlab (Mathworks, 2015) and R program-
ming packages were used for exported point clouds of retaining
wall on further analysis (R Core Team, 2017, Roussel and Auty,
2017).
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3.2 Experimental Results

MLS point cloud data which were inspected from preprocessed
used to assess the RANSAC. CloudCompare software was used
for RANSAC plane fitting with different point sampling and er-
ror threshold (CloudCompare, 2018). Distribution of differences
from a plane changes the standard deviations from 0.02 m-0.10
m as error threshold. It’s clearly seen that error threshold limits
are affected the plane parameters.

The implemented PCA diagonalisation method afore mentioned
in Section 2.3. Results are showing the without parameters;
planes can be estimated from point cloud only require k − nn
value to estimate covariance matrix of neighbourhood. However,
it is luck of the estimate curvature limit. For planarity can es-
timated made by large number of neighbourhood value. On the
other hand, this pre-segmentation of point cloud is valuable for
robust plane fitting algorithms. The eigenvalues computed from
the MLS point cloud data and are analysed for planarity with vi-
sually, without quantitative analysis (Figure 7). When RANSAC
and PCA-RLM methods were compared, PCA-RLM method was
fitted better than RANSAC fitted points. The comparison made
from fitted plane distances to the plane for both algorithms (Ta-
ble 1).

Figure 7. Planarity of PCA analysis.

Figure 8. PCA-RLM fitted a plane on retaining wall point
clouds.

Method Max(m) Min.(m) Std(m) Mean(m)
RANSAC 6.089 -6.124 1.484 -0.091
PCA-
RLM

4.099 -5.725 1.043 -0.026

Table 1. RANSAC & (PCA-RLM) proposed method descriptive
statistics.

Displacements are calculated based on fitted plane inside 5 mm
point cloud limited points. In the point cloud which provides the
limit count 1902 points were calculated for displacement analy-
sis. Figure 9 shows that the displacement was mostly occurred on
North and Up directions. The deformation type of wall displace-
ment interpretation can be clearly made according to the Figure 6.
A horizontal (North direction) part of retaining wall have moved
forward. Similarly Figure 6b down movements have seen and
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Figure 9. Displacements on North, East and Up axis,
respectively

integration with two type of displacements recognized on a re-
taining wall.

4. CONCLUSIONS AND FUTURE WORK

In this paper, an approach presented for processing of MLS point
clouds for retaining wall best fitting plane detection and monitor-
ing. The proposed method has outlined in Section 2 and applied
for the single retaining wall. The dataset acquired by RIEGL
VMX-450 at Taşkent, Konya, Turkey. The region of interest area
has been clipped manually for evaluation. The results of the pro-
posed method stages are demonstrated in Section 3.2. Potential
plane features are recognized effectively from the cleared point
clouds which do not include large outliers and than planar faces
were extracted with first method of RANSAC paradigm. Accord-
ing to the algorithm, given the pre-processing parameters, has de-
tected the plane successfully. However, it can detect multi-planes
when the wrong/less point parameters were given. Robust lin-
ear regression models which are proposed in this paper estimated
the plane without giving any parameters. However, before esti-
mation it requires preprocessing, thus it needs more processing
time. The proposed methodology requires optimization for large
point clouds. In order to acquire results for fast, high resolution
MLS data have been resampled to ten thousand points. It has
to be noticed that high capacity workstation computers process
less time to process point cloud on parallel architecture. The ex-
periment proves that the proposed method, effectively ability to
fit the plane without any pre-parameters and better accuracy than
RANSAC (Table 1). However, in order to detect multi-plane re-
taining wall chains, i.e. threshold each plane point sample further
improvements need to be done .

ACKNOWLEDGEMENTS

In this study, data acquisition is funded by Selcuk University
BAP coordinatorship with Grant number 15401017. The authors
would like to thank for field survey and data processing support
to Koyuncu LiDAR company.

REFERENCES

Canaz, S. and Habib, A., 2014. Photogrammetric features for
the registration of terrestrial laser scans with minimum overlap.
Journal of Geodesy and Geoinformation.

Canaz, S., Karsli, F., Guneroglu, A. and Dihkan, M., 2015. Auto-
matic boundary extraction of inland water bodies using lidar data.
Ocean & Coastal Management 118, pp. 158–166.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W4, 2018 
GeoInformation For Disaster Management (Gi4DM), 18–21 March 2018, Istanbul, Turkey

This contribution has been peer-reviewed.    
https://doi.org/10.5194/isprs-archives-XLII-3-W4-603-2018 | © Authors 2018. CC BY 4.0 License.

 
607

http://www.lidarharita.com/
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