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ABSTRACT: 
 
Large-scale mapping and monitoring of agriculture land use are very important. It helps in forecast crop yields, assesses the factors 
influencing the crop stress and estimate the damage due to natural hazards. Also, more essentially, aids in calculating the irrigation 
water demand at the farm level and better water resource management. Recent developments in remote sensing satellite sensors 
spatial and temporal resolutions, global coverage and open access such as Sentinel-2, created new possibilities in mapping and 
monitoring land use/land cover features. The present study investigated the performance and applicability of Sen2-Agri system in 
the heterogeneous cropping system for operational crop type mapping at parcel resolution using time series Sentinel-2 multispectral 
satellite imagery. The parcel level crop type information was collected in the field by systematic sampling and used to train and 
validate the random forest (RF) classification in the system. The classification accuracy varied from 57% to 86% for different major 
crops. The overall classification accuracy was 70% with KAPPA index of 61%. The very small agriculture field size and persistent 
cloud cover are the major constraint to the improvement of classification accuracy. Combination of the time series imagery from 
multiple earth observation satellites for the monsoon cropping season and development of a robust system for in-situ data collection 
will further increase the mapping accuracy. Sen2-Agri system has the potential to handle a large amount of earth observation data 
and can be scaled up to the entire country, which will help in the efficient monitoring of crops. 
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1. INTRODUCTION 

Climate change affects the global agriculture and food security 
in complex ways (Schmidhuber and Tubiello, 2007). In the 
context of climate change and food security, the region-specific 
crop inventories are important which helps in identifying 
factors influencing crop stress, simulate and predict crop yield 
changes and analyses the market risks (Doraiswamy et al., 
2003; Monfreda et al., 2008; Mittal, 2012). There are multiple 
global agriculture monitoring systems are in place for decades 
for agriculture monitoring and early warning (Becker-Reshef et 
al., 2010). Fritz et al., (2019) compared the eight global 
agricultural monitoring systems and highlighted the 
uncertainties in the crop type maps, which are viewed as 
critically important. Remote sensing data is adequately used for 
cropland mapping at regional (Biradar and Xiao, 2011; Xiong et 
al., 2017; Teluguntla et al., 2018) and global scale (Pittman et 
al., 2010; Thenkabail et al., 2010; Matton et al., 2015). 
Moderate spatial resolution remote sensing data is exploited in 
mapping global rain-fed area (Biradar et al., 2009; Salmon et 
al., 2015) and irrigated area (Thenkabail et al., 2009; Siebert et 
al., 2015), crop type (Zheng et al., 2015; Asgarian et al., 2016; 
Kussul et al., 2017) and crop condition monitoring (Wu et al., 
2015). Nevertheless, the available cropland maps are of coarse 
spatial resolution and lack of sufficient accuracy for use in 
assessment and planning purposes (Fritz et al., 2013). However, 
the launch of Sentinel series satellites has created tremendous 
possibilities for improving the accuracy in cropland mapping 
and efficient agriculture monitoring. The Sentinel-2 (S-2) twin 
satellites equipped with Multispectral Imager (MSI) has the 
advantage of lesser revisiting time (5 days), high spatial 

resolution (10 meters), and a number of bands in the red-edge 
spectrum. Attempts were made to combine Sentinel-2 and 
Landsat satellite data to produce hybrid imagery to improve the 
number of observations and obtain cloud-free composite for 
crop mapping at a regional scale (Skakun et al., 2017; Griffiths 
et al., 2019). Moreover, the Copernicus open-access hub 
provided full free access to sentinel series satellite imagery 
from 2014 onwards and published more than 4.81 pebibyte 
volume of data (European Space Agency, 2018). This creates a 
new challenge and opportunity for developing automated 
systems that handle a large volume of remote sensing data and 
efficient information extraction. At the same time, the cloud-
processing facilities along with the application of artificial 
intelligence and machine learning algorithms getting more 
attention in remote sensing. It benefits the satellite data 
processing by optimization in handling a large volume of data, 
automation, and information extraction (Lary et al., 2016). The 
well-established machine learning methods such as support 
vector machine (SVM) and random forest (RF) are adequately 
used in crop type mapping because of their capability to 
produce accurate classification results with limited training 
samples and high computational efficiency (Mathur and Foody, 
2008; Löw et al., 2013; Waldner et al., 2015). Inglada et al., 
(2015) evaluated the performance of an open-source operational 
system processing chain “Sentinel-2 for Agriculture” funded by 
the European Space Agency (ESA) for automated crop type 
mapping. The system evaluated with processing strategies 
including RF and SVM classifiers for crop mapping in multiple 
sites and the results were compatible with the operational 
production of crop type maps at country scale. Later the system 
was named as “Sen2-Agri” operational standalone processing 
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with predefined sequential operations for near-real-time 
agriculture monitoring at parcel resolution using Sentinel-2 and 
Landsat data and tested in various cropping systems in the 
world (Defourny et al., 2019). The objective of the present 
study is to investigate the performance and applicability of 
Sen2-Agri system in the heterogeneous cropping system in 
India for operational crop type mapping at parcel resolution. 
 

2. STUDY AREA AND DATA 

The study is piloted in the Sangamner administrative block of 
Ahmednagar district, Maharashtra, India. It is located between 
74° 01′ 10″–74° 27′ 20″ E and 19° 12′ 09″–19° 46′ 51″ N, 
covers a geographical area of 1,688 km2. The climatic zone of 
the study area is ‘semi-arid’ with a mean annual rainfall of 480 
mm. Agriculture in this region is predominantly rainfed situated 
in northern and southern higher elevation profiles. The central 
part of the study area along the Rivers Pravara and Mula are 
concentrated with irrigated cropping (Figure 1).  
 

 
Figure 1. Location of the study area and training samples 

 
In this region crops are cultivated during three seasons: (i) 
Kharif (July–October, monsoon crops), (ii) Rabi (October–
March, winter crops), and (iii) Zaid (March–June, summer 
crops). Major crops cultivated in the rainfed region include 
pearl millet, maize, onion, sorghum, soybean, and the irrigated 
region farmers grow water-intensive crops such as sugarcane, 
pomegranate, and fodder crops (alfalfa). 
 
The S2 series Level-1 satellite imagery pertaining to monsoon 
(Kharif) cropping season of the area was downloaded from 
Copernicus open-access hub (https://scihub.copernicus.eu). The 
dates and cloud cover details of the scenes used in this study are 
provided in Table 1. Study region has persistent high cloud 
cover during the Kharif season thus the scenes covered with 

more than 90% cloud cover are excluded.  S-2 satellites acquire 
data on 13 spectral bands in the visible and near infrared 
(VNIR) and shortwave infrared (SWIR) with multiple spatial 
resolutions including 10m (4 bands), 20m (6 bands) and 60m (3 
bands).  
 
  
 
 
 

 

 

Table 1. S-2 satellite imagery used in this study 
The crop type in-situ data were collected at parcel level during 
the end of the growing season (October 2018) to perform the 
training and validation of image classification. The handheld 
GPS Garmin-eTrex® 20× with 2-3 m of location accuracy was 
used to geotag the crop type information. In total 535 parcel 
data for 6 major crops were collected systematically covering 
the entire study area (Figure.1). Training samples of non-
agricultural land cover classes were obtained by visual 
interpretation of very-high-resolution satellite data of Google 
Earth comparing with S-2 imagery.    
 

3. METHODS 

The methodology workflow of Sen2-Agri system used in this 
study is proved below in Figure.2. 
 

 
 

Figure 2. Methodology workflow of Sen2-Agri system 
 

Satellite - 
sensor 

Date Cloud cover 
Percentage 

S2A-MSI 02-Sep-2018 65 
S2A-MSI 12-Sep-2018 13 
S2A-MSI 02-Oct-2018 09 
S2B-MSI 07-Oct-2018 0 
S2A-MSI 12-Oct-2018 0 
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Sen2-Agri system provides a set of independent image 
processing modules, which rely on open-source Orfeo Toolbox 
(OTB). The process chain with two options i) automated 
execution using an Orchestrator manager which requires high 
computing power and ii) manual execution of modules. The 
detailed description of the modules and the system is available 
at Defourny et al., (2019). In the present study, the modules are 
manually executed for temporal synthesis processing, crop 
mask, and crop type map.  

 
3.1 Pre-processing 

The S2 level-1C series data is processed with S2-level 2 module 
MACCS (Multi-sensor Atmospheric Correction and Cloud 
Screening)–ATCOR(Atmospheric and Topographic Correction) 
joint algorithm known as MAJA (MAJA, 2017) module which 
detects the clouds and their shadows, and estimates aerosol 
optical thickness (AOT), water vapour and corrects for the 
atmospheric effects. Further, in the L2A series, the clouds and 
cloud shadows pixels were replaced with the 5-day temporal 
grid by linear interpolation and gap filling.   

 
3.2 Crop mask and Crop Type Mapping 

The gap-filled data was used to compute various indices 
including NDVI, NDWI, brightness, and red-edge and stacked 
with temporal surface reflectance products. The in situ data and 
the indices are then used to train the RF classifier. NDVI time 
.series from L2A individual scenes are computed to perform the 
majority voting for producing optimal crop mask  
 
Layer (L4A).  The process chain of gap filling, feature 
extraction and RF classification model training using in situ 
data and classification will be repeated for process 2 crop type 
mapping (L4B). The crop mask created during process 1 used 
for masking noncropland area. 
 
 
Table 2. F1-Scores and classification accuracy of crop type map 

 
3.3 Accuracy Assessment 
In total, 535-crop parcel sample were collected for training and 
validation purpose of 6 major crops. The samples were 
randomly split into calibration (75%) and validation (25%) sets. 
Confusion error matrix will be calculated with the process chain 
to understand the overall, user and producer accuracies. Overall 
accuracy was calculated to an agreement between the map and 
the reference information with KAPPA index. The F1-Score 
also calculated for the crop type classes based on producer and 
user accuracies (Powers 2011). 
 
 

4. RESULTS 

4.1 Accuracy Performance 

The accuracy assessment results of RF classification at the crop 
type map is provided in Table 2. The results showed the overall 
accuracy of 70% with KAPPA index of 61%. The higher 
classification accuracy of 86% attained by Soybean class with 
F1-Score of 0.64. The lowest classification accuracy observed 
in Maize with 57% class accuracy and the F1-Score of 0.34. 
The possible reason for the lower classification accuracy is 
mainly due to the size of agricultural fields in the study area, 
smaller amount of training samples and cloud cover.  

The average field size of crops pearl millet, fodder, maize, 
pomegranate, soybean, sugarcane is 0.48 ha, 0.45 ha, 0.29 ha, 
0.27 ha, 1.1 ha, and 0.58 ha respectively. The important Kharif 
months July to August is completely covered with cloud cover 
and the imagery used in this study pertaining to early 
September also have the cloud cover of almost 63%.  

 

4.2 Crop Mask and Crop Type Map 

The crop mask classification accuracy of cropland and non-
cropland classes are 84% and 91% respectively. The binary 
crop mask map of Sangamner with cropland and non-cropland 
is shown in Figure 3. MAJA processer extracted the bad quality 
pixels with cloud/cloud shadow and flagged the all S-2 series 
imagery. The problematic pixels were further replaced by linear 
interpolation and gap filling fusing good pixels from the time-
series and which created the possibility to develop a cloud fee 
composite S-2 series in Kharif season and it is used for crop 
type mapping. 
 

 
 

Figure 3. Crop mask created from S-2 series imagery 
 
The second process chain crop type mapping produced the 10m 
spatial resolution crop type map of six major crops in the 

 
Crop class 

 
Cropland 
samples 

 
F1-

score 

 
Classification 
accuracy (%) 

Pearl Millet 80 0.73 61 
fodder  84 0.73 61 
Maize 29 0.34 57 

pomegranate 165 0.72 75 
soybean 18 0.64 86 

sugarcane 159 0.74 80 
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rainfed and irrigated area of Sangamner block and shown in 
Figure 4.  
 

 
 

Figure 4. Crop type map (10m) obtained using RF 
classification. Inset 1 shows the crops of rainfed and inserts 2 

shows the irrigated area 

 

Crop  Area in ha 

Pearl Millet 32,140 

fodder 9,784 

maize 1,692 

pomegranate 19,632 

soybean 5,149 

sugarcane 15,349 

Total 83,746 
 

Table 3. Cultivated area of major crops in Kharif 2018 
 
The rainfed region with comparatively larger field size and less 
heterogeneity of crops produced high classification accuracy. In 
the irrigated cultivation area the diversity of crops are very high 
with smaller field size and it created difficulty in separation of 
crops in smaller field size. For example, a number of maize 
crop pixels were classified as sugarcane and the intermixing of 
pomegranate and sugarcane was noticed. 
 
 

5. CONCLUSIONS 

The study tested the capability of the free and open-source 
Sen2-Agri system to discriminate six major crops in the 
heterogeneous cropping system using a limited number of field 
samples and S-2 series multispectral satellite imagery. The 
overall classification accuracy was 70% with KAPPA index of 
61% attained using RF classification. The classification 
accuracy of crop types varied from 57% to 86%. The crop type 
maps are essential for estimating the loss and damage in case of 
natural disasters like floods, drought, and pest attacks. Further 
the crop type database with loss data aids in index-based 
insurance and improve the efficiency in insurance subsidy 
payouts. More importantly, the irrigation water resources 

management require information on cropping patterns to 
prepare optimal water allocation decisions. However, the 
classification accuracy of the crop type mapping was hampered 
due to small agriculture field size and persistent cloud cover in 
the area. Combination of the time series imagery from multiple 
earth observation satellites for the monsoon-cropping season 
possibly increase the chances of getting the cloud-free 
composite. Furthermore, the development of a robust system for 
in-situ data collection will further increase the mapping 
accuracy. The improvement in the accuracy will aid in 
operationalizing the earth observation for near-real-time 
agriculture monitoring. 
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