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Abstract: 

The relevance of this study is immense for India. The Indian economy largely depends on 
agriculture, which is impacted by weather extremes and variability in monsoon. India is more 
vulnerable to disruption from drought than countries like the United States. While agriculture 
accounts for just 16 percent of India’s economy, half of its 1.3 billion people work on farms, 
thus, making agriculture the backbone of the Indian economy. However, in agriculture, rice is 
India’s most important food crop with nearly 1 billion Indian people reliant on it as their 
major food source. Most important constraint to rice production is water stress which affects 
nearly ~40 million ha of rainfed system from the total ~45 million ha area under rice 
cultivation. Future climate change effects on rainfall timing and amount, and projected 
increases in temperature are expected to exacerbate existing water stresses and will have a 
direct impact on agriculture in India, especially rice cultivation. We have developed an 
integrated system that is successfully implemented in many countries. The integrated system 
RHEAS (Regional Hydrological Extreme and Assessment System) coupled with M-DSSAT 
(modified DSSAT crop model) ingests various NASA Earth science data to produce a set of 
relevant hydrologic products (e.g., drought indices, water excess/stress information) and rice 
yields nowcasts (current conditions), forecasts, and seasonal projections, and then feed them 
into the operational agency. The overarching goal of this study is to provide this integrated 
system to stakeholder to improve decision-making process and mitigate the plights of rice 
farmers and prepare the country to deal with ground realities based on the forecast of rice 
production.

Introduction: 

Indian economy largely depends on agriculture, which is impacted by weather extremes and 
variability in monsoon. India is more vulnerable to disruption from drought than countries 
like the United States. While agriculture accounts for just 16 percent of India’s economy, half 
of its 1.3 billion people work on farms, thus, making agriculture the backbone of the Indian 
economy. However, in agriculture, rice is India’s most important food crop with nearly 1 
billion Indian people reliant on it as their major food source. Most important constraint to rice 
production is water stress which affects nearly ~40 million ha of rainfed system from the total 
~45 million ha area under rice cultivation [1]. As illustrated in Fig. 1, future climate change 
effects  on rainfall  timing and amount, and projected increases in temperature are expected to 

exacerbate existing water 
stresses and will have a direct 
impact on agriculture in India 
[2], especially rice culti- 
vation. India is also a major 
producer (second largest rice 
producer) and an important 
player in the global agriculture
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market, and with the integration of the world economies it is of strategic interest for the world 

to have an optimal forecast and assessment of agricultural production in India.  

   Understanding the significance and urgency of the situation, a physically-based, integrated 

hydrologic and crop modeling framework is essential that is at advanced Application Readiness 

Level. The integrated hydrologic and crop modeling framework will ingest the best available 

NASA Earth science remotely sensed data products (e.g., SMAP, GPM IMERG,  CHIRPS, 

TMPA, MODIS LAI/FPAR) to produce a set of relevant hydrologic variables (e.g., various 

drought indices, water excess/stress information) and crop yields nowcasts (current 

conditions), forecasts, and seasonal projections, and then feed them to the operational agency. 

These vital information is then will be useful for: i) assessment, early warning, and risks for 

agricultural droughts and outlooks of agricultural water demands in the rice cultivated regions 

of India; and ii) rice crop monitoring, seasonal yield forecasting, and final yield estimation. 

These critical information enable the stakeholders and policy-makers at the federal- and state-

level to: i) delineate drought-prone and drought-affected regions; ii) make crucial decisions in 

advance on distribution of drought-resistant seeds to the farmers of affected regions; (iii) 

providing subsidies for fertilizers and seeds; and (iv) distribution of monetary relief (insurance) 

to farmers in case of crop loss due to water stress and drought situations.  

Narrative: The changing climate and monsoon patterns in India have become a major concern 

for farmers, scientists, and policy-makers [3, 4, and 5]. For instance, researchers at the India 

Meteorological Department (IMD)-Pune, which handles long-range climate forecasts, have 

concluded that the June-September monsoon is increasingly becoming more sluggish in its 

initial phase, then picking up pace towards the end of the season [7, 8, and 9]. For a good 

harvest, the monsoon must not only be timely but also evenly distributed across the vast regions 

of the food-bowl states of India. Given current farming practices, a good knowledge of 

upcoming geophysical events (e.g., expected rainfall, drought outlooks) for June and July is 

vital, as during that period farmers sow a variety of crops, such as rice, maize, and pulses. 

Uncertainties in seasonal climate forecast and occurrence of frequent droughts have also made 

the situation critical. These changes in climate have pushed India’s agriculture sector towards 

a tipping point and it must now be prepared to face the challenges by upgrading existing 

systems and tools to keep feeding a billion-plus population. Therefore, it is crucial to have a 

reliable and comprehensive forecasting model that uses cutting edge tools, physically-based 

models and reliable satellite-based remote sensing data to provide a skillful forecast of water 

stress and seasonal (1 to 3 months in advance) crop yield estimates. 

   The current system (FASAL from ISRO) lacks seasonal crop and drought forecasting 

component, and this limitations stems from unavailability of an integrated physically-based 

hydrologic and crop modeling framework with forecasting capability. We propose a 

physically-based, integrated hydrologic and crop modeling framework that essentially factor 

in all major influencing attributes for modeling seasonal rice yield forecast and estimation, and 

related drought status. The integrated model extends flexibility to run scenarios to optimize the 

rice yield and broadcast advisories to farmers. The integrated framework enables key 

information to decision-makers to take effective measures to deal with the impending situation 

to optimize crop yield and protect farmers.  

Based on these contexts, this study advances the use of satellite observations and hydrologic 

modeling to monitor and assess local and regional water quantity for improving risk 

assessment, economic planning, investment planning, and policy making. Therefore,  a 

physically-based coupled hydrologic and crop model named as the Regional Hydrologic 

Extremes Assessment System (RHEAS) [10] coupled with the Modified-DSSAT (M-DSSAT) 

[11], as shown in Fig. 2 for nowcasts and forecasts using the best available ground- and 

satellite-based information for the rice producing regions of India is implemented. The RHEAS 

and M-DSSAT software architecture and its major components are coded in Python and the 

model outputs are stored in a GIS-enabled relational database (PostGIS). The design choice 

has several advantages: (i) system modularity since any model added to RHEAS needs to only 
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interface with the database and not any other model internal formats; (ii) GIS functionality that 

allows spatial operations, complex queries and analytics; (iii) the ability to serve data through 

well-established web technologies. The design allows seamless coupling of the core hydrologic 

model with other models extending the system’s applicability. All models in RHEAS retrieve 

their input and store their output in a PostGIS database. The datasets that are not produced by 

the RHEAS models, including satellite observations are automatically fetched and ingested 

into the PostGIS database. 

The logic of integrating the hydrologic model (HM) in RHEAS and crop model (CSM) in M-

DSSAT is to capture the whole gamut of hydrological processes and the full extent of process 

dynamics involved in the soil-plant-atmosphere continuum. Figure 2 illustrates a simplified 

flow diagram of the integrated framework. We selected a widely-used HM, the Variable 

Infiltration Capacity (VIC) (Liang et al., 1994) model, and for the crop model, we selected a 

widely used CSM, the Decision Support System for Agrotechnology Transfer – Cropping 

System Model (DSSAT) [11]. They both are physically-based models and can run in nowcast 

and forecast modes. 

 

Hydrologic Modeling: 

The VIC model is a large-

scale, semi-distributed 

hydrologic model that 

solves the full water and 

energy balances of a 

study domain under 

consideration. VIC 

allows the estimation of a 

multitude of hydrologic 

variables and a suite of 

water availability 

indicators that 

encompass the variability 

and characteristics of the 

entire water cycle. These 

variables and indicators 

are constrained by 

satellite and in situ observations of the hydrological cycle: precipitation, snow (if needed), ET, 

soil moisture, groundwater, and runoff. Figure 3 and Fig. 4 show the current capability of the 

the RHEAS and M-DSSAT framework. 

Figure 3: Capability of RHEAS framework, example from operational system in theEast 

Africa region, the figure shows nowcasts of hydrologic outputs of the RHEAS system. 
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Figure 4: Operational RHEAS 

system from the Southeast Asia 

Hub, nowcasts of hydrologic output 

(SMDI) of the RHEAS system. The 

web-based system is operational. 

The online portal is available at 

https://rdcyis-servir.adpc.net. 

 

 

   The minimum input requirements 

for VIC include precipitation, air 

temperature and wind speed, which 

can either be provided by the satellite data products (if available) or reanalysis from the 

National Center for Environmental Prediction (NCEP) datasets [12]. The temporal resolution 

of VIC will be daily since droughts are relatively persistent events that require daily 

precipitation to be captured by a hydrologic model. ET and soil moisture are prognostic 

variables in VIC, but can be corrected using the satellite observations and an optimal estimation 

technique. The spatial resolution of the model simulation for this project will be 5 and 25 km, 

and is primarily governed by the available precipitation products. 

 

Crop Modeling: In the integrated system, RHEAS output (obtained from assimilating remote 

sensing observations) from VIC is used to initialize the surface boundary conditions and root-

zone profiles of the crop model, i.e., Modified-DSSAT (M-DSSAT). The coupled M-DSSAT 

is also linked with an Ensemble Kalman Filter (EnKF) to assimilate profile soil moisture (from 

VIC) and vegetation related attributes (e.g., MODIS LAI), as illustrated in Fig. 5. The VIC and 

the M-DSSAT in the modeling framework (Fig. 2) use the same forcings.  (NOTE: The original 

DSSAT model is modified to become M-DSSAT that accommodate EnKF with 50 ensemble 

members) 

 

Figure 5: M-DSSAT crop model of the RHEAS framework. It is capable of 50 ensembles (E 

in the figure), optimal to capture the variability in agricultural system within an administrative 

unit [13]. 

 

   The integrated framework’s crop modeling component (M-DSSAT) simulates growth, 

development, and yield of a crop, under given management practices, weather and 
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environmental conditions, e.g., soil fertility, soil water holding capacity, etc. The crop model 

is equipped with its own soil hydrology module that interacts with the crop component that 

simulates plant’s phenology, morphology, and yield. Ensembles are made in the M-DSSAT 

that capture the variability in the agricultural system due to various model parameters, soil 

profile, uncertainty in planting dates, fertilizer application and different types of seeds 

(cultivars). Crop models are generally designed to run continuously from sowing until maturity 

and harvest. Therefore, it is expected that by moving towards harvest season, the history of 

crop growth captured by model helps the M-DSSAT to produce a more realistic crop yield 

forecast than what could otherwise be obtained by just using model-based forcing from 

seasonal climate forecast. It should be noted that to incorporate M-DSSAT in the integrated 

framework, we have customized to stop on any given day to facilitate data assimilation (EnKF) 

when desired and restarts from that point in time [13]. As illustrated in Fig 5, the M-DSSAT 

of the integrated system is also implemented for the East Africa region  and the Southeast Asia. 

Table 1 provides a list of datasets that are used to obtain the products shown above (Figures 3, 

4, and 6). For the proposed work, We plan to use the similar inputs of NASA remote sensing 

observations and geophysical data. These datasets are most advanced and optimally accurate 

with thorough quality control. Ingestion as inputs to the integrated framework will add 

significant value to the water and agricultural decision-making agencies. 

 
Figure 6: Operational M-DSSAT system from the, crop yields obtained from the integrated 

RHEAS and M-DSSAT framework: A) Maize yields from Kenya and Tanzania; and B) Rice 

yields from Thailand. 

 

Table 1: NASA products used in the RHEAS and M-DSSAT.  

 

A study was conducted to 

evaluate the performance of the 

RHEAS and M-DSSAT 

framework for the rice producing 

states of India. The results are 

shown in the following Figs 7 - 

10. The study areas are among 

the major rice producing states of 

India. The rice cultivation is 

mostly rainfed and depends on 

onset, duration and intensity of 

monsoon. 
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Figure 7: Study area in the eastern part of 

India that comprises three states. CG - 

Chhattisgarh, OD – Odisha, and JH – 

Jharkhand.  

 

 

 

 

Nowcast simulation where done for 17 years (2001 – 2017). Figure 8 illustrates two distinct 

scenarios. 2012 a below normal monsoon and 2017 an average monsoon year. The RHEAS 

model clearly captures the impact of below average monsoon in 2012. The drought indicators 

from 2012 show higher severity (in Jul and Oct), low SPI ( 3-monthly) and low SMDI.  The 

outputs from RHEAS were used as inputs to M-DSSAT. Figure 9 highlights the impact of the 

drought in terms of rice yields in most of the districts of the three states (CG, OD and JH). The 

correlation between the drought indicators and the rice yields is significant. 

 

 

 

 

 

Figure 8: Outputs 
(water stress and 
drought indicators) 
from RHEAS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Rice 

yields for years 

2012 and 2017 

for the three 

states (CG, OD, 

and JH).  
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Actual rice yields and the simulated yields from the integrated framework are compared in 

Figure 10. The results demonstrate significant skills of the RHEAS and the M-DSSAT models. 

Models (VIC and M-DSSAT) calibration will further improve the outputs from the integrated 

system. The comparison demonstrate that the RHEAS and M-DSSAT system capture in the 

interannual variability for all the three states. The observed root-mean-square-difference 

between the simulated and observed is also very low ~300 kg/Ha with very high correlation. 

 

Figure 10: Comparison of actual rice yields and RHEAS and M-DSSAT output yields for three 

states for year 2006 to year 2015.  

 

   The output products from RHEAS and M-DSSAT system (Fig. 2) level includes a large range 

of hydrologic variables, indicators derived from the core hydrologic variables, and agricultural 

variables (a list of data products is illustrated in Table 2). Variables that are related directly to 

water stress are given in absolute values as well as anomalies; these include soil moisture, 

temperature, and precipitation (as shown in Fig. 11). These are also used to construct common 

drought indicators such as the Standardized Precipitation Index (SPI), the Palmer Drought 

Severity Index (PDSI), and the Surface Water Supply Index (SWSI) (see Table 2). 

Additionally, the fundamental drought characteristics of onset, duration, recovery, and severity 

are produced directly from RHEAS and M-DSSAT system. Severity (e.g., mild, moderate, 

severe, extreme) is spatially relative and time varying. Agricultural outputs include estimates 

of yield, productivity and crop health. Incorporating socioeconomic data to quantify and 

improve understanding of drought impacts to populations in the Indian rice producing states is 

of critical importance. The Crop-Drought Vulnerability Index (CDVI), for example, represents 

the sensitivity of crop productivity to the magnitude of a drought, which also characterizes the 

resilience of a region in terms of agricultural production [15]. All data products are in GIS-

ready formats as GeoTiffs, Shapefiles, and Rasters to facilitate seamless incorporation into 

existing GIS-enabled web-based or desktop-based toolkits. We will work with our partners to 

determine the best methods for visualizing and delivering the data products for effective 

decision-making. RHEAS and M-DSSAT system has all the necessary variables to generate 

new customized products that will be developed based on the user needs and requirements to 

optimally guide decision-makers and help formulate policies during exigencies.  

 

 

Table 2: Suite of data products 

from the RHEAS and M-DSSAT 

system generated within the 

integrated framework. Products 

can be extended and customized 

as per stakeholder’s need. 
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Figure 11: An example of data 

product from the RHEAS and M-

DSSAT system ready for 

implementation and operation. 

The results are for 15th June, 2015 

from the simulation that used the 

NCEP forcings and CHIRPS 

precipitation data for five years 

(2011 to 2015). 

 

 

Conclusions: 

   The coupled RHEAS and M-DSSAT system will be a robust capability for the India and will 

eliminate the current deficiencies by incorporating: i) advanced remote sensing data and 

flexibility to choose specific remote sensing data or make an ensemble of remote sensing data 

as inputs; ii) provide tools to monitor and forecast most of the land surface hydrologic 

variables, and potential for computing different drought indices (e.g., SPI, SMDI, PDSI, and 

SWI); iii) capture variability in the hydrologic and crop modeling using ensemble mode of 

coupled RHEAS and M-DSSAT system; iv) enable tools for skillful seasonal (1 to 3 months) 

forecast of crop yields with uncertainty bounds based on global short-term and long-term 

seasonal climate forecast; v) extend capability to run the physically-based models on weekly 

basis to regularly monitor and update the status of drought and the future crop yields; and vi) 

impart capability to run decadal scale simulations using  different evolving climate scenarios 

to understand water use/stress/demand and crop yields trend based on different evolving 

climate scenarios. The RHEAS and M-DSSAT system will also equip our decision making 

agencies with the integrated framework to run various scenarios in advance to assess the 

drought and water stress conditions and crop yields when changing the variables and 

parameters pertaining to planting dates, fertilizer applications, irrigation scheduling, and 

experimentation of new drought resistant cultivars (seed types) using the projected seasonal 

climate forecast.  
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