
VEGETATION CONDITION INDEX: A POTENTIAL YIELD ESTIMATOR 
 

S.K. Dubey∗ Ashutosh Gavli, Neetu & S.S. Ray 
 

Mahalanobis National Crop Forecast Centre, Pusa Campus, New Delhi, India - sunil.dubey86@gov.in; 
ashu.agricos@gmail.com; (neetu.ncfc,  shibendu.ncfc)@nic.in 

 
Commission III, WG III/10 

 
KEY WORDS: Vegetation Condition Index, Remote Sensing, FASAL, Yield forecasting, NDVI 
 
 
ABSTRACT: 
 
Early yield assessment at local, regional and national scales is a major requirement for various users such as agriculture planners, 
policy makers, crop insurance companies and researchers. Current study explored a remote sensing-based approach of predicting the 
yield of Wheat, Kharif Rice and Rabi Rice at district level, using Vegetation Condition Index (VCI), under the FASAL programme. 
In order to make the estimates 14-years’ historical database (2003–2016) of NDVI was used to derive the VCI. The yield estimation 
was carried out for 335 districts (136 districts of Wheat, 23 districts of Rabi Rice and 159 districts of Kharif Rice) for the period of 
2016-17. NDVI products (MOD-13A2) of MODIS instrument on board Terra satellite at 16-day interval from first fortnight of peak 
growing period of crop were used to calculate the VCI. Stepwise regression technique was used to develop empirical models 
between VCI and historical yield of crops. Estimated yields are good in agreement with the actual district level yield with the R2 of, 
0.78 for Wheat, 0.52 for Rabi Rice and 0.69 for Kharif Rice. For all the districts, the empirical models were found to be statistically 
significant. A large number of statistical parameters were computed to evaluate the performance of VCI-based models in predicting 
district-level crop yield. Though there was variation in model performance in different states and crops, overall, the study showed 
the usefulness of VCI, which can be used as an input for operational crop yield forecasting, at district level. 
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1. INTRODUCTION 

Crop yield forecasting is necessary, particularly in countries 
that depend on agriculture as their main source of economy. 
Early yield assessment at regional and national scales is 
becoming increasingly important to many user-groups, e.g. 
agriculture planners and policy makers, crop insurance 
companies and researcher’s community (Van Wart et al. 2013; 
Dadhwal and Ray 2000). It enables planners and decision 
makers to predict how much to import in case of shortfall or to 
export in case of surplus. Lack of quality agricultural statistics 
may lead to misallocation of scarce resources and policy 
formulations that fail to resolve critical development problems. 
Crop yield estimation in many countries is based on 
conventional procedures of data collection through 
experimentation. Such techniques are often subjective, costly, 
time consuming and are prone to large errors due to incomplete 
ground observations, leading to poor crop yield assessment 
(Sapkota et al. 2016). Various methods of yield estimation in 
India has been reported by Sud et al. (2016).   
 
Remotely sensed crop data offer considerable opportunities for 
agricultural decision makers via the possible improvement in 
crop yield predictions and crop loss assessment (Lobell 2013). 
It has the potential and the capacity to provide spatial 
information at global scale of features and phenomena on earth 
on an almost real-time basis. Many countries had adopted the 
remote sensing-based crop yield forecast in operational system, 
some of the major agricultural programmes in the world 
monitoring agriculture are GEO Global Agricultural Monitoring 
(GLAM) (Inbal Becker-Reshef et al. 2010), Monitoring 
Agricultural Resources through Remote Sensing (MARS) 
(Gallego 1999), FAO Global Information and Early Warning 
System (GIEWS) (www.fao.org/giews/en/), China Crop Watch 
System (CCWS) (http://www.cropwatch.com.cn/).  

 
 
GEOGLAM project (GEOGLAM, 2019) monitors real-time 
crop conditions and contributes national crop production 
forecasts (for wheat, soybeans, corn, and rice) computed by 30 
national partners to the AMIS (Agricultural Market Information 
System) outlooks on a monthly basis. GIEWS – (Global 
Information and Early Warning System) of FAO utilizes remote 
sensing data and provide a valuable insight on water availability 
and vegetation health during the cropping seasons also provided 
regional production forecast. The MARS crop yield forecasting 
system (MCYFS) is used to monitor crop growth development, 
evaluate short-term effects of anomalous meteorological events, 
and provide monthly forecasts of crop yield and production 
(Van der Velde & Nisini, 2019). RIICE (Remote sensing-based 
Information and Insurance for Crops in Emerging economies) 
produces accurate rice crop maps and yield forecasts (Setiyono 
et al. 2014) and quantifies production damage caused by natural 
disasters (http://www.riice.org). 
 
India is one of the few countries which have well established 
system of crop yield estimation. Crop production forecasts in 
India using remotely sensed data started in early 1990s at Space 
Applications Centre (SAC), Ahmedabad under Crop Acreage 
and Production Estimation (CAPE) project (Navalgund et al. 
1991). Currently, FASAL (Forecasting Agricultural output 
using Space, Agro-meteorology and Land-based observations) 
is a major programme of the Department of Agriculture, 
Cooperation and Farmers’ Welfare, Ministry of Agriculture & 
Farmers Welfare, aimed at pre-harvest crop production 
forecasting at district, state and national level (Ray et al. 2014a, 
Ray et al 2014b). Under FASAL project, crop area is estimated 
using remote sensing data and yield is estimated either using 
agro-meteorological, crop simulation or remote sensing-based 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W6, 2019 
ISPRS-GEOGLAM-ISRS Joint Int. Workshop on “Earth Observations for Agricultural Monitoring”, 18–20 February 2019, New Delhi, India

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-3-W6-211-2019 | © Authors 2019. CC BY 4.0 License.

 
211

http://www.fao.org/giews/en/
http://www.cropwatch.com.cn/
http://www.riice.org/


 

models. FASAL deals with 8 major crops of the country, 
including the major food grain crops like Rice and Wheat.  
 
For yield prediction of crops, it is necessary to achieve a very 
high accuracy and reliability. Remote sensing technology offers 
the high accuracy and reliability through the quantitative 
processing of satellite remote sensing data (Ferencz et al. 2004). 
Remote sensing-based yield estimation have already been 
proven as an effective alternative for conventional yield 
forecasting system (Dadhwal, & Ray, 2000; Noureldin et al., 
2013; Chen et al., 2011; Rahman et al., 2009; Rahman et al., 
2012; Wang et al., 2010; Haung et al., 2013; Dubey et al., 
2018, Dubey et al., 2017).  
 
One of the most popular remote sensing-based indices used for 
crop assessment is Normalized Difference Vegetation Index 
(NDVI), which is the ratio of (NIR-R)/(NIR+R), where NIR & 
R are reflectance in near infra-red and red band.  The NDVI has 
been found to be highly related with leaf area index, crop 
condition and fraction of absorbed Photosynthetically active 
radiation. There have been many works to develop models crop 
yield using NDVI (Rasmussen, 1992; Murthy, et al. 1996; 
Burke & Lobell 2017; Bose, et al., 2016; Chlingaryan, et al., 
2018).  However, the crops with indeterminate growth a bit and 
the crops where LAI is not strongly related to final yield, NDVI 
performance in yield prediction have been poor (Ray et 
al.1999).   
 
Vegetation Condition Index (VCI), as suggested by Kogan 
(1998), is an indicator of the vigour of the vegetation cover, as a 
function of NDVI minima and maxima for a given time period 
and a given land area. It normalizes NDVI based on its value 
over many years and results in a consistent index for different 
land cover types. VCI has been considered as an ideal candidate 
in the index-based insurance because it is highly correlated with 
crop yields and hence able to accurately track yield losses 
(Hochrainer-Stigler et al. 2014). Dubey et al. (2018) used VCI 
for district-level Sugarcane yield estimation under the FASAL 
project and observed that The VCI derived from long-term low-
resolution satellite data has ability to explain the sugarcane 
yield variability up to 86%, in some cases where as in majority 
of cases, the variability explained was more than 60%. 
 
Though the remote sensing technology has proven its ability in 
crop yield forecasting, still the use of vegetation index in 
operational yield forecasting of food grain crops at district level 
is unexplored. Considering the facts, present study has been 
planned to evaluate the role of VCI for district level yield 
estimation of major (Rice & Wheat) crops grown in India.  
 
 

2. METHODOLOGY 

2.1 Study area 

VCI based yield estimates have been generated and evaluated 
for total 439 districts, which includes 222 districts of Wheat in 
9 states, 32 districts of Rabi Rice in 5 states, 31 districts of 
Samba Rice in 1 state and 154 districts of Kharif Rice in 13 
states. The states /districts selected in the study are major 
growing states /districts covers ~80% of total concerned crop 
production. Name of the states are given in Table 1 along with 
model statistics.  
 
 
 

State 
Estimate
d Yield 
(kg/ha) 

F 
Values R2 Adjusted 

R2 

Number 
of 

District
s 

Wheat 

Bihar  
803 - 
3341 2 - 36 

0.19 - 
0.89 

0.11 - 
0.86 38 

Gujarat 
2197 - 
3763 5 - 35 

0.37 - 
0.85 

0.3 - 
0.82 8 

Himachal 
Pradesh 

1681 - 
2510 4 - 51 

0.43 - 
0.92 

0.37 - 
0.91 7 

Haryana 
2480 - 
5489 2 - 60 

0.39 - 
0.98 

0.2 - 
0.97 19 

Madhya 
Pradesh 

1408 - 
4440 3 - 84 

0.27 - 
0.96 

0.19 - 
0.94 49 

Punjab 
4100 - 
5513 2 - 19 

0.41 - 
0.91 

0.12 - 
0.83 17 

Rajasthan 
1654 - 
4308 1 - 33 

0.26 - 
0.94 

0.12 - 
0.88 23 

Uttarakhand 
1004 - 
4277 

12 - 
16 

0.58 - 
0.8 

0.54 - 
0.76 4 

Uttar 
Pradesh 

1911 - 
4631 

2 - 
198 

0.38 - 
0.99 

0.21 - 
0.98 57 

Rabi Rice 
Andhra 
Pradesh 

3378 - 
4432 

7 - 
275 

0.45 - 
0.96 

0.39 - 
0.96 6 

Telangana 
2551 - 
3940 4 - 32 0.32 - 

0.89 
0.25 - 
0.86 5 

Karnataka 
2071 - 
5186 1 - 15 0.38 - 

0.79 
0.18 - 
0.74 4 

Odisha 
1702 - 
4810 

16 - 
56 

0.7 - 
0.94 

0.65 - 
0.93 8 

West 
Bengal 

2907 - 
4015 3 - 34 0.24 - 

0.89 
0.17 - 
0.86 9 

Samba Rice 

Tamil Nadu 
1476 - 
5445 

1 - 
152 

0.22 - 
0.97 

0.14 - 
0.97 31 

Kharif Rice 
Andhra 
Pradesh 

1938 -
3654 5  - 19  

 0.24-
0.82 -  4 

Assam 
984 -
2309 7 - 50 

0.32-
0.88 - 15 

Bihar 
1050 -
3025 6 - 56 

0.18-
0.86 - 19 

Chhattisgarh 
1003 -
3119 7 - 17 

0.22-
0.79 - 9 

Haryana 
1717 -
3887 7 - 14 

0.31-
0.92 - 8 

Jharkhand 
1614 -
3811 6 - 54 

0.18-
0.96 - 13 

Karnataka 
1539 -
3223 7 - 21 

0.43-
0.91 - 8 

Madhya 
Pradesh 

896 -
3222 6 - 17 

0.18-
0.79 - 7 

Orissa 
959 -
2556 5- 29 

0.28-
0.97 - 26 

Punjab 
2999 -
4875 6- 29 

0.31-
0.86 - 6 

Telangana 
2583 -
3788 2 - 43 

0.34-
0.67 - 5 

Uttar 
Pradesh 

1577 -
2947 6- 41 

0.21-
0.88 - 27 

West 
Bengal 

2220 -
3089 7 - 25 

0.17-
0.77 - 7 

Table 1: District wise ranges of Yield and statistical parameters 
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2.2 Data used 

2.2.1 Crop map generation 
 
For kharif Rice, three Dates of RISAT-1 SAR (Synthetic 
Aperture Radar) MRS (Medium Resolution ScanSAR) mode 
data were used for acreage estimation. This satellite data is 
available once in every 25 days for the same area. Data 
pertaining to three such successive dates for each area has been 
used for acreage estimation. Dates of data acquisition for 
Punjab & Haryana ranges from June 19 to Aug 22, 2016 and for 
rest of the states from July 03 to September 30, 2016. Total 691 
RISAT-1 MRS scenes (115 x 115 km2) were used for the study. 
Stratified sample segment method and logical modelling 
classification approach was used for image analysis using 3271 
Ground Truth (GT) sites collected by State Agriculture 
Departments.  Rabi Rice map was generated using Sentinel-1 
SAR (Synthetic Aperture Radar) data of 20m resolution. This 
satellite data is available once in every 10 days for the same 
area. Data pertaining to three/four such successive dates 
(between mid-December and end of Feb) for each area has been 
used. Additionally, Landsat-8 OLI (30m) and Sentinel-2 MSI 
(10m) data were also used for few districts. Samba Rice was 
estimated using Sentinel-1(SAR, 20m resolution) from 
November 18, 2016 to January 10, 2017 data (Total 18 scenes).  
 
For wheat crop map, single-date Resourcesat-2 LISS-III (24m 
Resolution) data during the period 24 February to 07 March, 
2017 have been used for acreage estimation. Wherever cloud 
free LISS III data was not available, single-date Sentinel-2(10m 
resolution) or Landsat (30 m resolution) data have been used.  
Supervised maximum likelihood classification approach was 
followed for image analysis using 2264 GT sites collected by 
state agriculture departments. After classification of the crop 
using satellite data, state-wise crop maps were prepared. These 
crops maps were used for generating crop specific vegetation 
indices for different districts. 
 

Table 2: Descriptive statistics of estimated vs Actual yield 
(kg/ha) 

 
2.2.2 Vegetation Condition Index 
 
MODIS NDVI product (MOD13A2), available at every 16 days 
at 1 km spatial resolution as a gridded level-3 product in the 
Sinusoidal projection from the period of 2003–2016, was used 
to derive the Vegetation Condition Index. Level-II Land Use 
Land Cover (LULC) maps were taken from National Remote 
Sensing Centre (NRSC) for the year 2012 which is available on 
1:50,000 scale derived using multitemporal Resourcesat 2 
terrain corrected LISS III data. District shape files were used for 
demarcation of district boundary and calculation of district 
mean of NDVI. Under ideal conditions of good rainfall, 
adequate nutrients and management inputs, the crop in a region 
could grow to its maximum vigour, producing maximum NDVI 
for that year. On the contrary, in a drought year, less rainfall 
and inadequate inputs result in very low NDVI. This maximum 

and minimum NDVI are the conceivable limits of the 
vegetation vigour, for a particular area and period, over the 
several years considered. When the current year NDVI is 
compared with the maximum and the minimum values, it helps 
in getting a fair idea of the present status of vegetation 
compared to its trend. Vegetation Condition Index (VCI) helps 
in isolating the short-term weather signals in the NDVI from the 
long-term ecological signal. The VCI of NDVI is defined as 
(Kogan 1998). 
 

100
minmax

min ×







−
−

=
NDVINDVI
NDVINDVIVCI current  

 
where, NDVII is the NDVI at current time, NDVImin is the 
historical minimum NDVI for the same location and same 
period, and NDVImax is the historical maximum NDVI. 
 
In present study, 14-year historical database (2003–2016) of 
NDVI was used to derive the VCI. The VCI images were 
overlaid with crop maps to generate crop specific VCI values. 
District-level crop maps were overlaid on the VCI images to get 
average (of all pixels in the district) VCI values for the districts. 
Thus, fortnight crops (Rice, Wheat) VCI values for each 
district, for 14 years, were derived. District-wise historical yield 
(2003–2015) data of concerned crops were taken from 
Directorate of Economics and Statistics (DES), Government of 
India and the State Agriculture Departments. The yields were 
used as dependent variable to develop the model. Correlation 
analysis was carried out between fortnightly VCI values and the 
crop yield. Empirical relation between yield and VCI for each 
district was derived using stepwise multiple linear regression 
technique, as defined by Agrawal (2011). Stepwise regression is 
a method of fitting regression models in which the choice of 
predictive variables is carried out by an automatic procedure. In 
each step, a variable is considered for addition to or subtraction 
from the set of explanatory variables based on pre-specified 
criterion (e.g. F value). For this purpose, SPSS v.16.0 

(statistical package) was used. The models developed for each 
district were used to estimate district-level crop’s yield for  
 
2016–17 using that year’s district-level VCI values. The 
detailed methodology of yield estimation is described in (Dubey 
et al. 2018). 
 
2.2.3 Model validation 
 
The model validation has been carried out by checking the 
accuracy of estimated yield against the observed yield obtained 
from Directorate of Economics and Statistics or State 
Agricultural Statistical Agencies). Various statistical 
parameters, R2, RMSE-root-mean-square error (Fox 1981), 
NMSE- normalized mean-squared error (Kumar et al. 1993), 
FB-fractional bias (Kumar et al. 1993) Modeling efficiency 
(Greenwood et al., 1985) and d- index of agreement (Willmott 
and Wicks 1980). Brief description of these statistical procedure 
is available in (Dubey et al. 2018). 

Statistics 

Kharif Rice Yield  
(kg/ha) 

Wheat Yield  
(kg/ha) 

Samba Rice Yield 
(kg/ha) 

Rabi Rice Yield 
 (kg/ha) 

Estimated Actual Estimated Actual 
Estimate
d Actual Estimated Actual 

Standard Deviation 1031.5 1101.3 1006.5 920.4 1397.2 1156.7 634.0 549.0 
Standard Error 93.0 99.3 86.6 79.2 338.9 280.5 135.2 117.0 
Skewness 0.7 0.3 0.2 0.2 0.1 -0.3 -0.3 -0.4 
Kurtosis -0.4 -1.1 -0.7 -0.9 -1.4 -1.1 0.9 -0.9 
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3. RESULTS AND DISCUSSION 

 
3.1 Model development  
 
The regression based statistical models were developed using 
fortnightly VCI as independent variable and observed yield 
obtained from DES as a dependent variable. The model 
parameters i.e. F value, R2 and Adjusted R2 is presented in 
Table 1. The results revealed that the F Values which is often 
used for comparing statistical models that have been fitted to a 
data set, in order to identify the model that best fits the 
population from which the data were sampled. In case of Wheat 
R2 ranged from 0.20 to 0.99 in among the study districts. In the 
states like Gujarat, Haryana, Punjab, Uttar Pradesh, Himachal 
Pradesh and Uttarakhand the values of R2 is within the 
acceptable range. In case of Rajasthan, Bihar and Madhya 
Pradesh the values of R2 goes below the 0.3 (in few districts), 
though the model was significant (p=0.05). In Madhya 
Pradesh the reason of poor fitting of model may be due to 
higher year wise yield variation in the data obtained from 
DES.  
 
In case of Rabi rice R2 ranges from 0.24 to 0.96. It is evident 
from the table 3 that in the states like Andhra Pradesh and 
Odisha, the values of correlation coefficient were good which 
elaborates that the estimates derived from VCI method were in 
good agreement with the DES estimates. Samba Rice grown 
only in Tamilnadu states consist of 31 districts. The districts 
wise model was good in agreement and R2 ranged between 
0.22-0.97. 
 
Similarly, in case of Kharif rice the model is in good 
agreement with the VCI. R2 ranges between 0.17 to 0.96. 
model developed for the states like Bihar, Jharkhand, 
Chhattisgarh, West Bengal and Uttar Pradesh is relatively poor 
in agreement in comparison to other states. This may be due to 
intra season sowing variability.  In Madhya Pradesh the poor 
agreement of models in few districts is again may be due to 
higher yield (DES) variability.  
 
3.2 General yield statistics 

Descriptive statistics of entire study districts presented in Table 
2 revealed that the average estimated yield of Kharif Rice is 
2395.6 kg/ha against the estimated yield of 2560 kg/ha, average 
estimated yield of wheat is 3322.3 kg/ha against the actual yield 
of 3511 kg/ha. Rabi Rice yield (both estimated and actual) is 
quite higher in comparison to Kharif Rice and Samba Rice, it is 
already being reported that the Rabi rice yield is higher in 
comparison to Kharif Rice (Anonymous, 2019). Standard error 
for Actual yield of Samba Rice is higher in comparison to 
Kharif Rice and Rabi rice, it may be due to smaller population 
size (n=31). The values for asymmetry and kurtosis lies 
between -2 and +2 are considered acceptable in order to prove 
normal univariate distribution (George & Mallery, 2010) in our 
estimates the values are well within the range.  
 
 
3.3 Model validation 

In order to validate the model accuracy of estimated vs. actual 
yield has been quantified using various statistical procedures 
like R2, RMSE-root-mean-square error, NMSE- normalized 

mean-squared error, FB-fractional bias, EF-Modeling efficiency 
and d- index of agreement. The result of model validation is 
given in Table 3 and graphically depicted in Figure 1. Over all 
the results indicates that the estimates are in agreement with 
actual yield. 
 
The R2 between the estimated and observed yield indicates that 
the predicted yield is good in agreement with actual yield 
except in Samba Rice and Rabi Rice. RMSE indicates the 
higher error in case of Samba Rice where as lowest in case of 
kharif Rice. Normalized mean-square error (NMSE), and 
Fractional Bias (FB) which should have been ideally close to 
zero, was very low for all the crops, in general. Index of 
agreement between the predicted yield which should be 0-1 is 
well within the range.  The lowest limit of FB, RMSE, NMSE, 
EF, d and FB is 0 that means full adherence between model 
estimates and measures values. Overall, all the validation 
procedure agrees with the model, only the poor performance 
noticed in case of Samba Rice. This may be due to sudden drop 

of VCI value in few districts during the October month peak 
growing period. The VCI profile of the districts having good 
and poor R2 is depicted in Figure 2.  

Table 3: model validation parameters 
 

 

 
 

Figure 1: District wise Actual vs Estimated yield (kg/ha) of 
Wheat, Kharif Rice, Rabi Rice and Samba rice. 

 

Index 
Kharif 
Rice Wheat 

Samba 
Rice 

Rabi 
Rice 

Estimated Yield 
(kg/ha) 2395.6 3322.3 3443.6 3614.4 

Observed Yield (kg/ha) 2560.3 3703.5 2565.1 3530.7 

R2 0.69 0.78 0.55 0.54 

RMSE   
13.3 25.6 157.8 14.8 

NMSE 0.1 0.018 0.2 0.02 

EF 0.7 0.6 -0.3 0.3 

d 0.9 0.9 0.8 0.9 

FB -0.1 -0.1 0.3 0.0 
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Figure 2:   Fortnightly variation of VCI in good and Poor R2 

districts of Samba Rice 
 
 

4. CONCLUSION 

This study was carried out to explore the suitability of satellite 
remote sensing-based index for operational district-level yield 
forecast of major food grains i.e. Rice & Wheat. The 
Vegetation Condition Index (VCI) derived from long-term low-
resolution satellite data was found to explain the district level 
yield variability up to 78% in Wheat up to 70% in Kharif Rice, 
54% Rabi Rice and 55% in Samba Rice. This is unique of its 
kind, since the district level yield forecast model using satellite 
remote sensing has not been developed yet, especially for 
Indian continent. In majority of cases, estimated yield was good 
in agreement with Actual yield. This study indicates the 
performance of VCI as an estimator is quite good for food grain 
crops.  
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